Skip to content

Commit

Permalink
Merge branch 'main' into SimilarizeStructured1D_to_Tree1D
Browse files Browse the repository at this point in the history
  • Loading branch information
ranocha authored Nov 8, 2024
2 parents 1eed083 + 806c1b9 commit 0c9ebb6
Show file tree
Hide file tree
Showing 29 changed files with 257 additions and 232 deletions.
14 changes: 7 additions & 7 deletions examples/tree_1d_dgsem/elixir_advection_diffusion.jl
Original file line number Diff line number Diff line change
Expand Up @@ -22,10 +22,12 @@ mesh = TreeMesh(coordinates_min, coordinates_max,
n_cells_max = 30_000, # set maximum capacity of tree data structure
periodicity = true)

function x_trans_periodic(x, domain_length = SVector(2 * pi), center = SVector(0.0))
function x_trans_periodic(x, domain_length = SVector(oftype(x[1], 2 * pi)),
center = SVector(oftype(x[1], 0)))
x_normalized = x .- center
x_shifted = x_normalized .% domain_length
x_offset = ((x_shifted .< -0.5 * domain_length) - (x_shifted .> 0.5 * domain_length)) .*
x_offset = ((x_shifted .< -0.5f0 * domain_length) -
(x_shifted .> 0.5f0 * domain_length)) .*
domain_length
return center + x_shifted + x_offset
end
Expand All @@ -37,11 +39,9 @@ function initial_condition_diffusive_convergence_test(x, t,
x_trans = x_trans_periodic(x - equation.advection_velocity * t)

nu = diffusivity()
c = 0.0
A = 1.0
L = 2
f = 1 / L
omega = 1.0
c = 0
A = 1
omega = 1
scalar = c + A * sin(omega * sum(x_trans)) * exp(-nu * omega^2 * t)
return SVector(scalar)
end
Expand Down
3 changes: 2 additions & 1 deletion examples/tree_1d_dgsem/elixir_burgers_linear_stability.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,8 +8,9 @@ using Trixi
equations = InviscidBurgersEquation1D()

function initial_condition_linear_stability(x, t, equation::InviscidBurgersEquation1D)
RealT = eltype(x)
k = 1
2 + sinpi(k * (x[1] - 0.7)) |> SVector
SVector(2 + sinpi(k * (x[1] - convert(RealT, 0.7))))
end

volume_flux = flux_ec
Expand Down
3 changes: 2 additions & 1 deletion examples/tree_1d_dgsem/elixir_burgers_rarefaction.jl
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,8 @@ mesh = TreeMesh(coordinate_min, coordinate_max,

# Discontinuous initial condition (Riemann Problem) leading to a rarefaction fan.
function initial_condition_rarefaction(x, t, equation::InviscidBurgersEquation1D)
scalar = x[1] < 0.5 ? 0.5 : 1.5
RealT = eltype(x)
scalar = x[1] < 0.5f0 ? convert(RealT, 0.5f0) : convert(RealT, 1.5f0)

return SVector(scalar)
end
Expand Down
3 changes: 2 additions & 1 deletion examples/tree_1d_dgsem/elixir_burgers_shock.jl
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,8 @@ mesh = TreeMesh(coordinate_min, coordinate_max,

# Discontinuous initial condition (Riemann Problem) leading to a shock to test e.g. correct shock speed.
function initial_condition_shock(x, t, equation::InviscidBurgersEquation1D)
scalar = x[1] < 0.5 ? 1.5 : 0.5
RealT = eltype(x)
scalar = x[1] < 0.5f0 ? convert(RealT, 1.5f0) : convert(RealT, 0.5f0)

return SVector(scalar)
end
Expand Down
9 changes: 5 additions & 4 deletions examples/tree_1d_dgsem/elixir_euler_blast_wave.jl
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,8 @@ A medium blast wave taken from
function initial_condition_blast_wave(x, t, equations::CompressibleEulerEquations1D)
# Modified From Hennemann & Gassner JCP paper 2020 (Sec. 6.3) -> "medium blast wave"
# Set up polar coordinates
inicenter = SVector(0.0)
RealT = eltype(x)
inicenter = SVector(0)
x_norm = x[1] - inicenter[1]
r = abs(x_norm)
# The following code is equivalent to
Expand All @@ -28,9 +29,9 @@ function initial_condition_blast_wave(x, t, equations::CompressibleEulerEquation
cos_phi = x_norm > 0 ? one(x_norm) : -one(x_norm)

# Calculate primitive variables
rho = r > 0.5 ? 1.0 : 1.1691
v1 = r > 0.5 ? 0.0 : 0.1882 * cos_phi
p = r > 0.5 ? 1.0E-3 : 1.245
rho = r > 0.5f0 ? one(RealT) : RealT(1.1691)
v1 = r > 0.5f0 ? zero(RealT) : RealT(0.1882) * cos_phi
p = r > 0.5f0 ? RealT(1.0E-3) : RealT(1.245)

return prim2cons(SVector(rho, v1, p), equations)
end
Expand Down
15 changes: 8 additions & 7 deletions examples/tree_1d_dgsem/elixir_euler_positivity.jl
Original file line number Diff line number Diff line change
Expand Up @@ -15,21 +15,22 @@ The Sedov blast wave setup based on Flash
"""
function initial_condition_sedov_blast_wave(x, t, equations::CompressibleEulerEquations1D)
# Set up polar coordinates
inicenter = SVector(0.0)
RealT = eltype(x)
inicenter = SVector(0)
x_norm = x[1] - inicenter[1]
r = abs(x_norm)

# Setup based on https://flash.rochester.edu/site/flashcode/user_support/flash_ug_devel/node187.html#SECTION010114000000000000000
r0 = 0.21875 # = 3.5 * smallest dx (for domain length=4 and max-ref=6)
r0 = 0.21875f0 # = 3.5 * smallest dx (for domain length=4 and max-ref=6)
# r0 = 0.5 # = more reasonable setup
E = 1.0
p0_inner = 6 * (equations.gamma - 1) * E / (3 * pi * r0)
p0_outer = 1.0e-5 # = true Sedov setup
E = 1
p0_inner = 6 * (equations.gamma - 1) * E / (3 * convert(RealT, pi) * r0)
p0_outer = convert(RealT, 1.0e-5) # = true Sedov setup
# p0_outer = 1.0e-3 # = more reasonable setup

# Calculate primitive variables
rho = 1.0
v1 = 0.0
rho = 1
v1 = 0
p = r > r0 ? p0_outer : p0_inner

return prim2cons(SVector(rho, v1, p), equations)
Expand Down
9 changes: 5 additions & 4 deletions examples/tree_1d_dgsem/elixir_euler_quasi_1d_discontinuous.jl
Original file line number Diff line number Diff line change
Expand Up @@ -18,10 +18,11 @@ A discontinuous initial condition taken from
"""
function initial_condition_discontinuity(x, t,
equations::CompressibleEulerEquationsQuasi1D)
rho = (x[1] < 0) ? 3.4718 : 2.0
v1 = (x[1] < 0) ? -2.5923 : -3.0
p = (x[1] < 0) ? 5.7118 : 2.639
a = (x[1] < 0) ? 1.0 : 1.5
RealT = eltype(x)
rho = (x[1] < 0) ? RealT(3.4718) : RealT(2.0)
v1 = (x[1] < 0) ? RealT(-2.5923) : RealT(-3.0)
p = (x[1] < 0) ? RealT(5.7118) : RealT(2.639)
a = (x[1] < 0) ? 1.0f0 : 1.5f0

return prim2cons(SVector(rho, v1, p, a), equations)
end
Expand Down
9 changes: 5 additions & 4 deletions examples/tree_1d_dgsem/elixir_euler_quasi_1d_ec.jl
Original file line number Diff line number Diff line change
Expand Up @@ -15,10 +15,11 @@ equations = CompressibleEulerEquationsQuasi1D(1.4)
# refinement level is changed the initial condition below may need changed as well to
# ensure that the discontinuities lie on an element interface.
function initial_condition_ec(x, t, equations::CompressibleEulerEquationsQuasi1D)
v1 = 0.1
rho = 2.0 + 0.1 * x[1]
p = 3.0
a = 2.0 + x[1]
RealT = eltype(x)
v1 = convert(RealT, 0.1)
rho = 2 + convert(RealT, 0.1) * x[1]
p = 3
a = 2 + x[1]

return prim2cons(SVector(rho, v1, p, a), equations)
end
Expand Down
15 changes: 8 additions & 7 deletions examples/tree_1d_dgsem/elixir_euler_sedov_blast_wave.jl
Original file line number Diff line number Diff line change
Expand Up @@ -15,21 +15,22 @@ The Sedov blast wave setup based on Flash
"""
function initial_condition_sedov_blast_wave(x, t, equations::CompressibleEulerEquations1D)
# Set up polar coordinates
inicenter = SVector(0.0)
RealT = eltype(x)
inicenter = SVector(0)
x_norm = x[1] - inicenter[1]
r = abs(x_norm)

# Setup based on https://flash.rochester.edu/site/flashcode/user_support/flash_ug_devel/node187.html#SECTION010114000000000000000
r0 = 0.21875 # = 3.5 * smallest dx (for domain length=4 and max-ref=6)
r0 = 0.21875f0 # = 3.5 * smallest dx (for domain length=4 and max-ref=6)
# r0 = 0.5 # = more reasonable setup
E = 1.0
p0_inner = 6 * (equations.gamma - 1) * E / (3 * pi * r0)
p0_outer = 1.0e-5 # = true Sedov setup
E = 1
p0_inner = 6 * (equations.gamma - 1) * E / (3 * convert(RealT, pi) * r0)
p0_outer = convert(RealT, 1.0e-5) # = true Sedov setup
# p0_outer = 1.0e-3 # = more reasonable setup

# Calculate primitive variables
rho = 1.0
v1 = 0.0
rho = 1
v1 = 0
p = r > r0 ? p0_outer : p0_inner

return prim2cons(SVector(rho, v1, p), equations)
Expand Down
15 changes: 8 additions & 7 deletions examples/tree_1d_dgsem/elixir_euler_sedov_blast_wave_pure_fv.jl
Original file line number Diff line number Diff line change
Expand Up @@ -15,21 +15,22 @@ The Sedov blast wave setup based on Flash
"""
function initial_condition_sedov_blast_wave(x, t, equations::CompressibleEulerEquations1D)
# Set up polar coordinates
inicenter = SVector(0.0)
RealT = eltype(x)
inicenter = SVector(0)
x_norm = x[1] - inicenter[1]
r = abs(x_norm)

# Setup based on https://flash.rochester.edu/site/flashcode/user_support/flash_ug_devel/node187.html#SECTION010114000000000000000
r0 = 0.21875 # = 3.5 * smallest dx (for domain length=4 and max-ref=6)
r0 = 0.21875f0 # = 3.5 * smallest dx (for domain length=4 and max-ref=6)
# r0 = 0.5 # = more reasonable setup
E = 1.0
p0_inner = 6 * (equations.gamma - 1) * E / (3 * pi * r0)
p0_outer = 1.0e-5 # = true Sedov setup
E = 1
p0_inner = 6 * (equations.gamma - 1) * E / (3 * convert(RealT, pi) * r0)
p0_outer = convert(RealT, 1.0e-5) # = true Sedov setup
# p0_outer = 1.0e-3 # = more reasonable setup

# Calculate primitive variables
rho = 1.0
v1 = 0.0
rho = 1
v1 = 0
p = r > r0 ? p0_outer : p0_inner

return prim2cons(SVector(rho, v1, p), equations)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,20 +18,21 @@ A multicomponent two interacting blast wave test taken from
"""
function initial_condition_two_interacting_blast_waves(x, t,
equations::CompressibleEulerMulticomponentEquations1D)
rho1 = 0.5 * x[1]^2
rho2 = 0.5 * (sin(20 * x[1]))^2
RealT = eltype(x)
rho1 = 0.5f0 * x[1]^2
rho2 = 0.5f0 * (sin(20 * x[1]))^2
rho3 = 1 - rho1 - rho2

prim_rho = SVector{3, real(equations)}(rho1, rho2, rho3)

v1 = 0.0
v1 = 0

if x[1] <= 0.1
p = 1000
elseif x[1] < 0.9
p = 0.01
if x[1] <= RealT(0.1)
p = convert(RealT, 1000)
elseif x[1] < RealT(0.9)
p = convert(RealT, 0.01)
else
p = 100
p = convert(RealT, 100)
end

prim_other = SVector{2, real(equations)}(v1, p)
Expand Down
9 changes: 5 additions & 4 deletions examples/tree_1d_dgsem/elixir_hypdiff_harmonic_nonperiodic.jl
Original file line number Diff line number Diff line change
Expand Up @@ -19,12 +19,13 @@ A non-priodic harmonic function used in combination with
function initial_condition_harmonic_nonperiodic(x, t,
equations::HyperbolicDiffusionEquations1D)
# elliptic equation: -νΔϕ = f
if t == 0.0
phi = 5.0
q1 = 0.0
RealT = eltype(x)
if t == 0
phi = convert(RealT, 5)
q1 = zero(RealT)
else
A = 3
B = exp(1)
B = exp(one(RealT))
phi = A + B * x[1]
q1 = B
end
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ mesh = TreeMesh(coordinates_min, coordinates_max,
# that is advected to left with v - c and to the right with v + c.
# Correspondigly, the bump splits in half.
function initial_condition_gauss_wall(x, t, equations::LinearizedEulerEquations1D)
v1_prime = 0.0
v1_prime = 0
rho_prime = p_prime = 2 * exp(-(x[1] - 45)^2 / 25)
return SVector(rho_prime, v1_prime, p_prime)
end
Expand Down
5 changes: 3 additions & 2 deletions examples/tree_1d_dgsem/elixir_maxwell_E_excitation.jl
Original file line number Diff line number Diff line change
Expand Up @@ -20,9 +20,10 @@ mesh = TreeMesh(coordinates_min, coordinates_max,
# Excite the electric field which causes a standing wave.
# The solution is an undamped exchange between electric and magnetic energy.
function initial_condition_E_excitation(x, t, equations::MaxwellEquations1D)
RealT = eltype(x)
c = equations.speed_of_light
E = -c * sin(2 * pi * x[1])
B = 0.0
E = -c * sinpi(2 * x[1])
B = 0

return SVector(E, B)
end
Expand Down
17 changes: 9 additions & 8 deletions examples/tree_1d_dgsem/elixir_mhd_briowu_shock_tube.jl
Original file line number Diff line number Diff line change
Expand Up @@ -18,14 +18,15 @@ MHD extension of the Sod shock tube. Taken from Section V of the article
"""
function initial_condition_briowu_shock_tube(x, t, equations::IdealGlmMhdEquations1D)
# domain must be set to [0, 1], γ = 2, final time = 0.12
rho = x[1] < 0.5 ? 1.0 : 0.125
v1 = 0.0
v2 = 0.0
v3 = 0.0
p = x[1] < 0.5 ? 1.0 : 0.1
B1 = 0.75
B2 = x[1] < 0.5 ? 1.0 : -1.0
B3 = 0.0
RealT = eltype(x)
rho = x[1] < 0.5f0 ? 1.0f0 : 0.125f0
v1 = 0
v2 = 0
v3 = 0
p = x[1] < 0.5f0 ? one(RealT) : RealT(0.1)
B1 = 0.75f0
B2 = x[1] < 0.5f0 ? 1 : -1
B3 = 0
return prim2cons(SVector(rho, v1, v2, v3, p, B1, B2, B3), equations)
end
initial_condition = initial_condition_briowu_shock_tube
Expand Down
15 changes: 8 additions & 7 deletions examples/tree_1d_dgsem/elixir_mhd_ryujones_shock_tube.jl
Original file line number Diff line number Diff line change
Expand Up @@ -23,14 +23,15 @@ present in the one dimensional MHD equations. It is the second test from Section
"""
function initial_condition_ryujones_shock_tube(x, t, equations::IdealGlmMhdEquations1D)
# domain must be set to [0, 1], γ = 5/3, final time = 0.2
rho = x[1] <= 0.5 ? 1.08 : 1.0
v1 = x[1] <= 0.5 ? 1.2 : 0.0
v2 = x[1] <= 0.5 ? 0.01 : 0.0
v3 = x[1] <= 0.5 ? 0.5 : 0.0
p = x[1] <= 0.5 ? 0.95 : 1.0
inv_sqrt4pi = 1.0 / sqrt(4 * pi)
RealT = eltype(x)
rho = x[1] <= 0.5f0 ? RealT(1.08) : one(RealT)
v1 = x[1] <= 0.5f0 ? RealT(1.2) : zero(RealT)
v2 = x[1] <= 0.5f0 ? RealT(0.01) : zero(RealT)
v3 = x[1] <= 0.5f0 ? 0.5f0 : 0.0f0
p = x[1] <= 0.5f0 ? RealT(0.95) : one(RealT)
inv_sqrt4pi = 1 / sqrt(4 * convert(RealT, pi))
B1 = 2 * inv_sqrt4pi
B2 = x[1] <= 0.5 ? 3.6 * inv_sqrt4pi : 4.0 * inv_sqrt4pi
B2 = x[1] <= 0.5f0 ? RealT(3.6) * inv_sqrt4pi : 4 * inv_sqrt4pi
B3 = B1

return prim2cons(SVector(rho, v1, v2, v3, p, B1, B2, B3), equations)
Expand Down
38 changes: 20 additions & 18 deletions examples/tree_1d_dgsem/elixir_mhd_shu_osher_shock_tube.jl
Original file line number Diff line number Diff line change
Expand Up @@ -19,15 +19,16 @@ Taken from Section 4.1 of
function initial_condition_shu_osher_shock_tube(x, t, equations::IdealGlmMhdEquations1D)
# domain must be set to [-5, 5], γ = 5/3, final time = 0.7
# initial shock location is taken to be at x = -4
x_0 = -4.0
rho = x[1] <= x_0 ? 3.5 : 1.0 + 0.2 * sin(5.0 * x[1])
v1 = x[1] <= x_0 ? 5.8846 : 0.0
v2 = x[1] <= x_0 ? 1.1198 : 0.0
v3 = 0.0
p = x[1] <= x_0 ? 42.0267 : 1.0
B1 = 1.0
B2 = x[1] <= x_0 ? 3.6359 : 1.0
B3 = 0.0
RealT = eltype(x)
x_0 = -4
rho = x[1] <= x_0 ? RealT(3.5) : 1 + RealT(0.2) * sin(5 * x[1])
v1 = x[1] <= x_0 ? RealT(5.8846) : zero(RealT)
v2 = x[1] <= x_0 ? RealT(1.1198) : zero(RealT)
v3 = 0
p = x[1] <= x_0 ? RealT(42.0267) : one(RealT)
B1 = 1
B2 = x[1] <= x_0 ? RealT(3.6359) : one(RealT)
B3 = 0

return prim2cons(SVector(rho, v1, v2, v3, p, B1, B2, B3), equations)
end
Expand All @@ -45,15 +46,16 @@ function initial_condition_shu_osher_shock_tube_flipped(x, t,
equations::IdealGlmMhdEquations1D)
# domain must be set to [-5, 5], γ = 5/3, final time = 0.7
# initial shock location is taken to be at x = 4
x_0 = 4.0
rho = x[1] <= x_0 ? 1.0 + 0.2 * sin(5.0 * x[1]) : 3.5
v1 = x[1] <= x_0 ? 0.0 : -5.8846
v2 = x[1] <= x_0 ? 0.0 : -1.1198
v3 = 0.0
p = x[1] <= x_0 ? 1.0 : 42.0267
B1 = 1.0
B2 = x[1] <= x_0 ? 1.0 : 3.6359
B3 = 0.0
RealT = eltype(x)
x_0 = 4
rho = x[1] <= x_0 ? 1 + RealT(0.2) * sin(5 * x[1]) : RealT(3.5)
v1 = x[1] <= x_0 ? zero(RealT) : RealT(-5.8846)
v2 = x[1] <= x_0 ? zero(RealT) : RealT(-1.1198)
v3 = 0
p = x[1] <= x_0 ? one(RealT) : RealT(42.0267)
B1 = 1
B2 = x[1] <= x_0 ? one(RealT) : RealT(3.6359)
B3 = 0

return prim2cons(SVector(rho, v1, v2, v3, p, B1, B2, B3), equations)
end
Expand Down
17 changes: 9 additions & 8 deletions examples/tree_1d_dgsem/elixir_mhd_torrilhon_shock_tube.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,14 +17,15 @@ Torrilhon's shock tube test case for one dimensional ideal MHD equations.
"""
function initial_condition_torrilhon_shock_tube(x, t, equations::IdealGlmMhdEquations1D)
# domain must be set to [-1, 1.5], γ = 5/3, final time = 0.4
rho = x[1] <= 0 ? 3.0 : 1.0
v1 = 0.0
v2 = 0.0
v3 = 0.0
p = x[1] <= 0 ? 3.0 : 1.0
B1 = 1.5
B2 = x[1] <= 0 ? 1.0 : cos(1.5)
B3 = x[1] <= 0 ? 0.0 : sin(1.5)
RealT = eltype(x)
rho = x[1] <= 0 ? 3 : 1
v1 = 0
v2 = 0
v3 = 0
p = x[1] <= 0 ? 3 : 1
B1 = 1.5f0
B2 = x[1] <= 0 ? one(RealT) : cos(RealT(1.5f0))
B3 = x[1] <= 0 ? zero(RealT) : sin(RealT(1.5f0))
return prim2cons(SVector(rho, v1, v2, v3, p, B1, B2, B3), equations)
end
initial_condition = initial_condition_torrilhon_shock_tube
Expand Down
Loading

0 comments on commit 0c9ebb6

Please sign in to comment.