Skip to content

Commit

Permalink
Merge branch 'main' into main-navier
Browse files Browse the repository at this point in the history
  • Loading branch information
huiyuxie authored Jun 25, 2024
2 parents f6bbe8c + e114d01 commit 1736f50
Show file tree
Hide file tree
Showing 6 changed files with 307 additions and 98 deletions.
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "Trixi"
uuid = "a7f1ee26-1774-49b1-8366-f1abc58fbfcb"
authors = ["Michael Schlottke-Lakemper <[email protected]>", "Gregor Gassner <[email protected]>", "Hendrik Ranocha <[email protected]>", "Andrew R. Winters <[email protected]>", "Jesse Chan <[email protected]>"]
version = "0.7.17-pre"
version = "0.7.18-DEV"

[deps]
CodeTracking = "da1fd8a2-8d9e-5ec2-8556-3022fb5608a2"
Expand Down
24 changes: 14 additions & 10 deletions src/equations/hyperbolic_diffusion_1d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -53,13 +53,14 @@ function initial_condition_poisson_nonperiodic(x, t,
equations::HyperbolicDiffusionEquations1D)
# elliptic equation: -νΔϕ = f
# Taken from Section 6.1 of Nishikawa https://doi.org/10.1016/j.jcp.2007.07.029
if t == 0.0
RealT = eltype(x)
if t == 0
# initial "guess" of the solution and its derivative
phi = x[1]^2 - x[1]
q1 = 2 * x[1] - 1
else
phi = sinpi(x[1]) # ϕ
q1 = pi * cospi(x[1]) # ϕ_x
q1 = convert(RealT, pi) * cospi(x[1]) # ϕ_x
end
return SVector(phi, q1)
end
Expand All @@ -76,9 +77,10 @@ diffusion system that is used with [`initial_condition_poisson_nonperiodic`](@re
equations::HyperbolicDiffusionEquations1D)
# elliptic equation: -νΔϕ = f
# analytical solution: ϕ = sin(πx) and f = π^2sin(πx)
RealT = eltype(u)
@unpack inv_Tr = equations

dphi = pi^2 * sinpi(x[1])
dphi = convert(RealT, pi)^2 * sinpi(x[1])
dq1 = -inv_Tr * u[2]

return SVector(dphi, dq1)
Expand All @@ -96,8 +98,9 @@ function boundary_condition_poisson_nonperiodic(u_inner, orientation, direction,
surface_flux_function,
equations::HyperbolicDiffusionEquations1D)
# elliptic equation: -νΔϕ = f
RealT = eltype(u_inner)
phi = sinpi(x[1]) # ϕ
q1 = pi * cospi(x[1]) # ϕ_x
q1 = convert(RealT, pi) * cospi(x[1]) # ϕ_x
u_boundary = SVector(phi, q1)

# Calculate boundary flux
Expand All @@ -122,7 +125,7 @@ Source term that only includes the forcing from the hyperbolic diffusion system.

dq1 = -inv_Tr * u[2]

return SVector(zero(dq1), dq1)
return SVector(0, dq1)
end

"""
Expand All @@ -138,13 +141,14 @@ function initial_condition_eoc_test_coupled_euler_gravity(x, t,
equations::HyperbolicDiffusionEquations1D)

# Determine phi_x
G = 1.0 # gravitational constant
C = -4.0 * G / pi # -4 * G / ndims * pi
A = 0.1 # perturbation coefficient must match Euler setup
RealT = eltype(x)
G = 1 # gravitational constant
C = -4 * G / convert(RealT, pi) # -4 * G / ndims * pi
A = convert(RealT, 0.1) # perturbation coefficient must match Euler setup
rho1 = A * sinpi(x[1] - t)
# initialize with ansatz of gravity potential
phi = C * rho1
q1 = C * A * pi * cospi(x[1] - t) # = gravity acceleration in x-direction
q1 = C * A * convert(RealT, pi) * cospi(x[1] - t) # = gravity acceleration in x-direction

return SVector(phi, q1)
end
Expand Down Expand Up @@ -196,6 +200,6 @@ end
@inline function energy_total(u, equations::HyperbolicDiffusionEquations1D)
# energy function as found in equations (2.5.12) in the book "I Do Like CFD, Vol. 1"
phi, q1 = u
return 0.5 * (phi^2 + equations.Lr^2 * q1^2)
return 0.5f0 * (phi^2 + equations.Lr^2 * q1^2)
end
end # @muladd
60 changes: 32 additions & 28 deletions src/equations/hyperbolic_diffusion_2d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -39,17 +39,18 @@ end
@inline function initial_condition_poisson_nonperiodic(x, t,
equations::HyperbolicDiffusionEquations2D)
# elliptic equation: -ν Δϕ = f in Ω, u = g on ∂Ω
RealT = eltype(x)
if iszero(t)
T = eltype(x)
phi = one(T)
q1 = one(T)
q2 = one(T)
phi = one(RealT)
q1 = one(RealT)
q2 = one(RealT)
else
sinpi_x1, cospi_x1 = sincos(pi * x[1])
sinpi_2x2, cospi_2x2 = sincos(pi * 2 * x[2])
# TODO: sincospi
sinpi_x1, cospi_x1 = sincos(convert(RealT, pi) * x[1])
sinpi_2x2, cospi_2x2 = sincos(convert(RealT, pi) * 2 * x[2])
phi = 2 * cospi_x1 * sinpi_2x2 + 2 # ϕ
q1 = -2 * pi * sinpi_x1 * sinpi_2x2 # ϕ_x
q2 = 4 * pi * cospi_x1 * cospi_2x2 # ϕ_y
q1 = -2 * convert(RealT, pi) * sinpi_x1 * sinpi_2x2 # ϕ_x
q2 = 4 * convert(RealT, pi) * cospi_x1 * cospi_2x2 # ϕ_y
end
return SVector(phi, q1, q2)
end
Expand All @@ -58,10 +59,11 @@ end
equations::HyperbolicDiffusionEquations2D)
# elliptic equation: -ν Δϕ = f in Ω, u = g on ∂Ω
# analytical solution: ϕ = 2cos(πx)sin(2πy) + 2 and f = 10π^2cos(πx)sin(2πy)
RealT = eltype(u)
@unpack inv_Tr = equations

x1, x2 = x
du1 = 10 * pi^2 * cospi(x1) * sinpi(2 * x2)
du1 = 10 * convert(RealT, pi)^2 * cospi(x1) * sinpi(2 * x2)
du2 = -inv_Tr * u[2]
du3 = -inv_Tr * u[3]

Expand Down Expand Up @@ -115,13 +117,14 @@ function initial_condition_eoc_test_coupled_euler_gravity(x, t,
equations::HyperbolicDiffusionEquations2D)

# Determine phi_x, phi_y
G = 1.0 # gravitational constant
C = -2.0 * G / pi
A = 0.1 # perturbation coefficient must match Euler setup
rho1 = A * sin(pi * (x[1] + x[2] - t))
RealT = eltype(x)
G = 1 # gravitational constant
C = -2 * G / convert(RealT, pi)
A = convert(RealT, 0.1) # perturbation coefficient must match Euler setup
rho1 = A * sinpi(x[1] + x[2] - t)
# initialize with ansatz of gravity potential
phi = C * rho1
q1 = C * A * pi * cos(pi * (x[1] + x[2] - t)) # = gravity acceleration in x-direction
q1 = C * A * convert(RealT, pi) * cospi(x[1] + x[2] - t) # = gravity acceleration in x-direction
q2 = q1 # = gravity acceleration in y-direction

return SVector(phi, q1, q2)
Expand All @@ -133,13 +136,14 @@ end
phi, q1, q2 = u
@unpack inv_Tr = equations

RealT = eltype(u)
if orientation == 1
f1 = -equations.nu * q1
f2 = -phi * inv_Tr
f3 = zero(phi)
f3 = zero(RealT)
else
f1 = -equations.nu * q2
f2 = zero(phi)
f2 = zero(RealT)
f3 = -phi * inv_Tr
end

Expand Down Expand Up @@ -181,13 +185,13 @@ end
# this is an optimized version of the application of the upwind dissipation matrix:
# dissipation = 0.5*R_n*|Λ|*inv(R_n)[[u]]
λ_max = sqrt(equations.nu * equations.inv_Tr)
f1 = 1 / 2 * (f_ll[1] + f_rr[1]) - 1 / 2 * λ_max * (phi_rr - phi_ll)
f1 = 0.5f0 * (f_ll[1] + f_rr[1]) - 0.5f0 * λ_max * (phi_rr - phi_ll)
if orientation == 1 # x-direction
f2 = 1 / 2 * (f_ll[2] + f_rr[2]) - 1 / 2 * λ_max * (q1_rr - q1_ll)
f3 = 1 / 2 * (f_ll[3] + f_rr[3])
f2 = 0.5f0 * (f_ll[2] + f_rr[2]) - 0.5f0 * λ_max * (q1_rr - q1_ll)
f3 = 0.5f0 * (f_ll[3] + f_rr[3])
else # y-direction
f2 = 1 / 2 * (f_ll[2] + f_rr[2])
f3 = 1 / 2 * (f_ll[3] + f_rr[3]) - 1 / 2 * λ_max * (q2_rr - q2_ll)
f2 = 0.5f0 * (f_ll[2] + f_rr[2])
f3 = 0.5f0 * (f_ll[3] + f_rr[3]) - 0.5f0 * λ_max * (q2_rr - q2_ll)
end

return SVector(f1, f2, f3)
Expand All @@ -204,13 +208,13 @@ end
# this is an optimized version of the application of the upwind dissipation matrix:
# dissipation = 0.5*R_n*|Λ|*inv(R_n)[[u]]
λ_max = sqrt(equations.nu * equations.inv_Tr)
f1 = 1 / 2 * (f_ll[1] + f_rr[1]) -
1 / 2 * λ_max * (phi_rr - phi_ll) *
f1 = 0.5f0 * (f_ll[1] + f_rr[1]) -
0.5f0 * λ_max * (phi_rr - phi_ll) *
sqrt(normal_direction[1]^2 + normal_direction[2]^2)
f2 = 1 / 2 * (f_ll[2] + f_rr[2]) -
1 / 2 * λ_max * (q1_rr - q1_ll) * normal_direction[1]
f3 = 1 / 2 * (f_ll[3] + f_rr[3]) -
1 / 2 * λ_max * (q2_rr - q2_ll) * normal_direction[2]
f2 = 0.5f0 * (f_ll[2] + f_rr[2]) -
0.5f0 * λ_max * (q1_rr - q1_ll) * normal_direction[1]
f3 = 0.5f0 * (f_ll[3] + f_rr[3]) -
0.5f0 * λ_max * (q2_rr - q2_ll) * normal_direction[2]

return SVector(f1, f2, f3)
end
Expand Down Expand Up @@ -244,6 +248,6 @@ end
@inline function energy_total(u, equations::HyperbolicDiffusionEquations2D)
# energy function as found in equations (2.5.12) in the book "I Do Like CFD, Vol. 1"
phi, q1, q2 = u
return 0.5 * (phi^2 + equations.Lr^2 * (q1^2 + q2^2))
return 0.5f0 * (phi^2 + equations.Lr^2 * (q1^2 + q2^2))
end
end # @muladd
89 changes: 52 additions & 37 deletions src/equations/hyperbolic_diffusion_3d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -49,16 +49,22 @@ end
function initial_condition_poisson_nonperiodic(x, t,
equations::HyperbolicDiffusionEquations3D)
# elliptic equation: -νΔϕ = f
if t == 0.0
phi = 1.0
q1 = 1.0
q2 = 1.0
q3 = 1.0
RealT = eltype(x)
if t == 0
phi = one(RealT)
q1 = one(RealT)
q2 = one(RealT)
q3 = one(RealT)
else
phi = 2.0 * cos(pi * x[1]) * sin(2.0 * pi * x[2]) * sin(2.0 * pi * x[3]) + 2.0 # ϕ
q1 = -2.0 * pi * sin(pi * x[1]) * sin(2.0 * pi * x[2]) * sin(2.0 * pi * x[3]) # ϕ_x
q2 = 4.0 * pi * cos(pi * x[1]) * cos(2.0 * pi * x[2]) * sin(2.0 * pi * x[3]) # ϕ_y
q3 = 4.0 * pi * cos(pi * x[1]) * sin(2.0 * pi * x[2]) * cos(2.0 * pi * x[3]) # ϕ_z
phi = 2 * cospi(x[1]) *
sinpi(2 * x[2]) *
sinpi(2 * x[3]) + 2 # ϕ
q1 = -2 * convert(RealT, pi) * sinpi(x[1]) *
sinpi(2 * x[2]) * sinpi(2 * x[3]) # ϕ_x
q2 = 4 * convert(RealT, pi) * cospi(x[1]) *
cospi(2 * x[2]) * sinpi(2 * x[3]) # ϕ_y
q3 = 4 * convert(RealT, pi) * cospi(x[1]) *
sinpi(2 * x[2]) * cospi(2 * x[3]) # ϕ_z
end
return SVector(phi, q1, q2, q3)
end
Expand All @@ -67,10 +73,11 @@ end
equations::HyperbolicDiffusionEquations3D)
# elliptic equation: -νΔϕ = f
# analytical solution: ϕ = 2 cos(πx)sin(2πy)sin(2πz) + 2 and f = 18 π^2 cos(πx)sin(2πy)sin(2πz)
RealT = eltype(u)
@unpack inv_Tr = equations

x1, x2, x3 = x
du1 = 18 * pi^2 * cospi(x1) * sinpi(2 * x2) * sinpi(2 * x3)
du1 = 18 * convert(RealT, pi)^2 * cospi(x1) * sinpi(2 * x2) * sinpi(2 * x3)
du2 = -inv_Tr * u[2]
du3 = -inv_Tr * u[3]
du4 = -inv_Tr * u[4]
Expand All @@ -82,10 +89,15 @@ function boundary_condition_poisson_nonperiodic(u_inner, orientation, direction,
surface_flux_function,
equations::HyperbolicDiffusionEquations3D)
# elliptic equation: -νΔϕ = f
phi = 2.0 * cos(pi * x[1]) * sin(2.0 * pi * x[2]) * sin(2.0 * pi * x[3]) + 2.0 # ϕ
q1 = -2.0 * pi * sin(pi * x[1]) * sin(2.0 * pi * x[2]) * sin(2.0 * pi * x[3]) # ϕ_x
q2 = 4.0 * pi * cos(pi * x[1]) * cos(2.0 * pi * x[2]) * sin(2.0 * pi * x[3]) # ϕ_y
q3 = 4.0 * pi * cos(pi * x[1]) * sin(2.0 * pi * x[2]) * cos(2.0 * pi * x[3]) # ϕ_z
RealT = eltype(u_inner)
phi = 2 * cospi(x[1]) * sinpi(2 * x[2]) *
sinpi(2 * x[3]) + 2 # ϕ
q1 = -2 * convert(RealT, pi) * sinpi(x[1]) *
sinpi(2 * x[2]) * sinpi(2 * x[3]) # ϕ_x
q2 = 4 * convert(RealT, pi) * cospi(x[1]) *
cospi(2 * x[2]) * sinpi(2 * x[3]) # ϕ_y
q3 = 4 * convert(RealT, pi) * cospi(x[1]) *
sinpi(2 * x[2]) * cospi(2 * x[3]) # ϕ_z
u_boundary = SVector(phi, q1, q2, q3)

# Calculate boundary flux
Expand All @@ -108,7 +120,7 @@ Source term that only includes the forcing from the hyperbolic diffusion system.
# harmonic solution ϕ = (sinh(πx)sin(πy) + sinh(πy)sin(πx))/sinh(π), so f = 0
@unpack inv_Tr = equations

du1 = zero(u[1])
du1 = 0
du2 = -inv_Tr * u[2]
du3 = -inv_Tr * u[3]
du4 = -inv_Tr * u[4]
Expand All @@ -129,13 +141,15 @@ function initial_condition_eoc_test_coupled_euler_gravity(x, t,
equations::HyperbolicDiffusionEquations3D)

# Determine phi_x, phi_y
G = 1.0 # gravitational constant
C_grav = -4 * G / (3 * pi) # "3" is the number of spatial dimensions # 2D: -2.0*G/pi
A = 0.1 # perturbation coefficient must match Euler setup
rho1 = A * sin(pi * (x[1] + x[2] + x[3] - t))
RealT = eltype(x)
G = 1 # gravitational constant
C_grav = -4 * G / (3 * convert(RealT, pi)) # "3" is the number of spatial dimensions # 2D: -2.0*G/pi
A = convert(RealT, 0.1) # perturbation coefficient must match Euler setup
rho1 = A * sinpi(x[1] + x[2] + x[3] - t)
# initialize with ansatz of gravity potential
phi = C_grav * rho1
q1 = C_grav * A * pi * cos(pi * (x[1] + x[2] + x[3] - t)) # = gravity acceleration in x-direction
q1 = C_grav * A * convert(RealT, pi) *
cospi(x[1] + x[2] + x[3] - t) # = gravity acceleration in x-direction
q2 = q1 # = gravity acceleration in y-direction
q3 = q1 # = gravity acceleration in z-direction

Expand All @@ -147,20 +161,21 @@ end
equations::HyperbolicDiffusionEquations3D)
phi, q1, q2, q3 = u

RealT = eltype(u)
if orientation == 1
f1 = -equations.nu * q1
f2 = -phi * equations.inv_Tr
f3 = zero(phi)
f4 = zero(phi)
f3 = zero(RealT)
f4 = zero(RealT)
elseif orientation == 2
f1 = -equations.nu * q2
f2 = zero(phi)
f2 = zero(RealT)
f3 = -phi * equations.inv_Tr
f4 = zero(phi)
f4 = zero(RealT)
else
f1 = -equations.nu * q3
f2 = zero(phi)
f3 = zero(phi)
f2 = zero(RealT)
f3 = zero(RealT)
f4 = -phi * equations.inv_Tr
end

Expand All @@ -184,19 +199,19 @@ end
# this is an optimized version of the application of the upwind dissipation matrix:
# dissipation = 0.5*R_n*|Λ|*inv(R_n)[[u]]
λ_max = sqrt(equations.nu * equations.inv_Tr)
f1 = 1 / 2 * (f_ll[1] + f_rr[1]) - 1 / 2 * λ_max * (phi_rr - phi_ll)
f1 = 0.5f0 * (f_ll[1] + f_rr[1]) - 0.5f0 * λ_max * (phi_rr - phi_ll)
if orientation == 1 # x-direction
f2 = 1 / 2 * (f_ll[2] + f_rr[2]) - 1 / 2 * λ_max * (q1_rr - q1_ll)
f3 = 1 / 2 * (f_ll[3] + f_rr[3])
f4 = 1 / 2 * (f_ll[4] + f_rr[4])
f2 = 0.5f0 * (f_ll[2] + f_rr[2]) - 0.5f0 * λ_max * (q1_rr - q1_ll)
f3 = 0.5f0 * (f_ll[3] + f_rr[3])
f4 = 0.5f0 * (f_ll[4] + f_rr[4])
elseif orientation == 2 # y-direction
f2 = 1 / 2 * (f_ll[2] + f_rr[2])
f3 = 1 / 2 * (f_ll[3] + f_rr[3]) - 1 / 2 * λ_max * (q2_rr - q2_ll)
f4 = 1 / 2 * (f_ll[4] + f_rr[4])
f2 = 0.5f0 * (f_ll[2] + f_rr[2])
f3 = 0.5f0 * (f_ll[3] + f_rr[3]) - 0.5f0 * λ_max * (q2_rr - q2_ll)
f4 = 0.5f0 * (f_ll[4] + f_rr[4])
else # y-direction
f2 = 1 / 2 * (f_ll[2] + f_rr[2])
f3 = 1 / 2 * (f_ll[3] + f_rr[3])
f4 = 1 / 2 * (f_ll[4] + f_rr[4]) - 1 / 2 * λ_max * (q3_rr - q3_ll)
f2 = 0.5f0 * (f_ll[2] + f_rr[2])
f3 = 0.5f0 * (f_ll[3] + f_rr[3])
f4 = 0.5f0 * (f_ll[4] + f_rr[4]) - 0.5f0 * λ_max * (q3_rr - q3_ll)
end

return SVector(f1, f2, f3, f4)
Expand Down Expand Up @@ -232,6 +247,6 @@ end
@inline function energy_total(u, equations::HyperbolicDiffusionEquations3D)
# energy function as found in equation (2.5.12) in the book "I Do Like CFD, Vol. 1"
phi, q1, q2, q3 = u
return 0.5 * (phi^2 + equations.Lr^2 * (q1^2 + q2^2 + q3^2))
return 0.5f0 * (phi^2 + equations.Lr^2 * (q1^2 + q2^2 + q3^2))
end
end # @muladd
Loading

0 comments on commit 1736f50

Please sign in to comment.