Skip to content

Commit

Permalink
Add numerical support of other real types (ideal) (#1984)
Browse files Browse the repository at this point in the history
* start

* continue

* complete equations

* unit test 1D

* unit test 2D

* unit test 3D

* check errors

* check again

* fixed

---------

Co-authored-by: Hendrik Ranocha <[email protected]>
  • Loading branch information
huiyuxie and ranocha authored Jul 2, 2024
1 parent 179854e commit 220d5fe
Show file tree
Hide file tree
Showing 4 changed files with 744 additions and 408 deletions.
177 changes: 90 additions & 87 deletions src/equations/ideal_glm_mhd_1d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -42,14 +42,15 @@ end
A constant initial condition to test free-stream preservation.
"""
function initial_condition_constant(x, t, equations::IdealGlmMhdEquations1D)
rho = 1.0
rho_v1 = 0.1
rho_v2 = -0.2
rho_v3 = -0.5
rho_e = 50.0
B1 = 3.0
B2 = -1.2
B3 = 0.5
RealT = eltype(x)
rho = 1
rho_v1 = convert(RealT, 0.1)
rho_v2 = -convert(RealT, 0.2)
rho_v3 = -0.5f0
rho_e = 50
B1 = 3
B2 = -convert(RealT, 1.2)
B3 = 0.5f0
return SVector(rho, rho_v1, rho_v2, rho_v3, rho_e, B1, B2, B3)
end

Expand All @@ -61,14 +62,15 @@ An Alfvén wave as smooth initial condition used for convergence tests.
function initial_condition_convergence_test(x, t, equations::IdealGlmMhdEquations1D)
# smooth Alfvén wave test from Derigs et al. FLASH (2016)
# domain must be set to [0, 1], γ = 5/3
rho = 1.0
v1 = 0.0
RealT = eltype(x)
rho = 1
v1 = 0
# TODO: sincospi
si, co = sincos(2 * pi * x[1])
v2 = 0.1 * si
v3 = 0.1 * co
p = 0.1
B1 = 1.0
si, co = sincos(2 * convert(RealT, pi) * x[1])
v2 = convert(RealT, 0.1) * si
v3 = convert(RealT, 0.1) * co
p = convert(RealT, 0.1)
B1 = 1
B2 = v2
B3 = v3
return prim2cons(SVector(rho, v1, v2, v3, p, B1, B2, B3), equations)
Expand All @@ -86,17 +88,18 @@ function initial_condition_weak_blast_wave(x, t, equations::IdealGlmMhdEquations
# Adapted MHD version of the weak blast wave from Hennemann & Gassner JCP paper 2020 (Sec. 6.3)
# Same discontinuity in the velocities but with magnetic fields
# Set up polar coordinates
RealT = eltype(x)
inicenter = (0,)
x_norm = x[1] - inicenter[1]
r = sqrt(x_norm^2)
phi = atan(x_norm)

# Calculate primitive variables
rho = r > 0.5 ? 1.0 : 1.1691
v1 = r > 0.5 ? 0.0 : 0.1882 * cos(phi)
p = r > 0.5 ? 1.0 : 1.245
rho = r > 0.5f0 ? one(RealT) : convert(RealT, 1.1691)
v1 = r > 0.5f0 ? zero(RealT) : convert(RealT, 0.1882) * cos(phi)
p = r > 0.5f0 ? one(RealT) : convert(RealT, 1.245)

return prim2cons(SVector(rho, v1, 0.0, 0.0, p, 1.0, 1.0, 1.0, 0.0), equations)
return prim2cons(SVector(rho, v1, 0, 0, p, 1, 1, 1, 0), equations)
end

# Calculate 1D flux in for a single point
Expand All @@ -105,8 +108,8 @@ end
v1 = rho_v1 / rho
v2 = rho_v2 / rho
v3 = rho_v3 / rho
kin_en = 0.5 * (rho_v1 * v1 + rho_v2 * v2 + rho_v3 * v3)
mag_en = 0.5 * (B1 * B1 + B2 * B2 + B3 * B3)
kin_en = 0.5f0 * (rho_v1 * v1 + rho_v2 * v2 + rho_v3 * v3)
mag_en = 0.5f0 * (B1 * B1 + B2 * B2 + B3 * B3)
p_over_gamma_minus_one = (rho_e - kin_en - mag_en)
p = (equations.gamma - 1) * p_over_gamma_minus_one

Expand All @@ -117,7 +120,7 @@ end
f4 = rho_v1 * v3 - B1 * B3
f5 = (kin_en + equations.gamma * p_over_gamma_minus_one + 2 * mag_en) * v1 -
B1 * (v1 * B1 + v2 * B2 + v3 * B3)
f6 = 0.0
f6 = 0
f7 = v1 * B2 - v2 * B1
f8 = v1 * B3 - v3 * B1

Expand Down Expand Up @@ -150,44 +153,44 @@ function flux_derigs_etal(u_ll, u_rr, orientation::Integer,
mag_norm_ll = B1_ll^2 + B2_ll^2 + B3_ll^2
mag_norm_rr = B1_rr^2 + B2_rr^2 + B3_rr^2
p_ll = (equations.gamma - 1) *
(rho_e_ll - 0.5 * rho_ll * vel_norm_ll - 0.5 * mag_norm_ll)
(rho_e_ll - 0.5f0 * rho_ll * vel_norm_ll - 0.5f0 * mag_norm_ll)
p_rr = (equations.gamma - 1) *
(rho_e_rr - 0.5 * rho_rr * vel_norm_rr - 0.5 * mag_norm_rr)
beta_ll = 0.5 * rho_ll / p_ll
beta_rr = 0.5 * rho_rr / p_rr
(rho_e_rr - 0.5f0 * rho_rr * vel_norm_rr - 0.5f0 * mag_norm_rr)
beta_ll = 0.5f0 * rho_ll / p_ll
beta_rr = 0.5f0 * rho_rr / p_rr
# for convenience store v⋅B
vel_dot_mag_ll = v1_ll * B1_ll + v2_ll * B2_ll + v3_ll * B3_ll
vel_dot_mag_rr = v1_rr * B1_rr + v2_rr * B2_rr + v3_rr * B3_rr

# Compute the necessary mean values needed for either direction
rho_avg = 0.5 * (rho_ll + rho_rr)
rho_avg = 0.5f0 * (rho_ll + rho_rr)
rho_mean = ln_mean(rho_ll, rho_rr)
beta_mean = ln_mean(beta_ll, beta_rr)
beta_avg = 0.5 * (beta_ll + beta_rr)
v1_avg = 0.5 * (v1_ll + v1_rr)
v2_avg = 0.5 * (v2_ll + v2_rr)
v3_avg = 0.5 * (v3_ll + v3_rr)
p_mean = 0.5 * rho_avg / beta_avg
B1_avg = 0.5 * (B1_ll + B1_rr)
B2_avg = 0.5 * (B2_ll + B2_rr)
B3_avg = 0.5 * (B3_ll + B3_rr)
vel_norm_avg = 0.5 * (vel_norm_ll + vel_norm_rr)
mag_norm_avg = 0.5 * (mag_norm_ll + mag_norm_rr)
vel_dot_mag_avg = 0.5 * (vel_dot_mag_ll + vel_dot_mag_rr)
beta_avg = 0.5f0 * (beta_ll + beta_rr)
v1_avg = 0.5f0 * (v1_ll + v1_rr)
v2_avg = 0.5f0 * (v2_ll + v2_rr)
v3_avg = 0.5f0 * (v3_ll + v3_rr)
p_mean = 0.5f0 * rho_avg / beta_avg
B1_avg = 0.5f0 * (B1_ll + B1_rr)
B2_avg = 0.5f0 * (B2_ll + B2_rr)
B3_avg = 0.5f0 * (B3_ll + B3_rr)
vel_norm_avg = 0.5f0 * (vel_norm_ll + vel_norm_rr)
mag_norm_avg = 0.5f0 * (mag_norm_ll + mag_norm_rr)
vel_dot_mag_avg = 0.5f0 * (vel_dot_mag_ll + vel_dot_mag_rr)

# Ignore orientation since it is always "1" in 1D
f1 = rho_mean * v1_avg
f2 = f1 * v1_avg + p_mean + 0.5 * mag_norm_avg - B1_avg * B1_avg
f2 = f1 * v1_avg + p_mean + 0.5f0 * mag_norm_avg - B1_avg * B1_avg
f3 = f1 * v2_avg - B1_avg * B2_avg
f4 = f1 * v3_avg - B1_avg * B3_avg
f6 = 0.0
f6 = 0
f7 = v1_avg * B2_avg - v2_avg * B1_avg
f8 = v1_avg * B3_avg - v3_avg * B1_avg
# total energy flux is complicated and involves the previous eight components
v1_mag_avg = 0.5 * (v1_ll * mag_norm_ll + v1_rr * mag_norm_rr)
f5 = (f1 * 0.5 * (1 / (equations.gamma - 1) / beta_mean - vel_norm_avg) +
v1_mag_avg = 0.5f0 * (v1_ll * mag_norm_ll + v1_rr * mag_norm_rr)
f5 = (f1 * 0.5f0 * (1 / (equations.gamma - 1) / beta_mean - vel_norm_avg) +
f2 * v1_avg + f3 * v2_avg +
f4 * v3_avg + f6 * B1_avg + f7 * B2_avg + f8 * B3_avg - 0.5 * v1_mag_avg +
f4 * v3_avg + f6 * B1_avg + f7 * B2_avg + f8 * B3_avg - 0.5f0 * v1_mag_avg +
B1_avg * vel_dot_mag_avg)

return SVector(f1, f2, f3, f4, f5, f6, f7, f8)
Expand Down Expand Up @@ -228,27 +231,27 @@ Hindenlang and Gassner (2019), extending [`flux_ranocha`](@ref) to the MHD equat
# log((ϱₗ/pₗ) / (ϱᵣ/pᵣ)) / (ϱₗ/pₗ - ϱᵣ/pᵣ)
# = pₗ pᵣ log((ϱₗ pᵣ) / (ϱᵣ pₗ)) / (ϱₗ pᵣ - ϱᵣ pₗ)
inv_rho_p_mean = p_ll * p_rr * inv_ln_mean(rho_ll * p_rr, rho_rr * p_ll)
v1_avg = 0.5 * (v1_ll + v1_rr)
v2_avg = 0.5 * (v2_ll + v2_rr)
v3_avg = 0.5 * (v3_ll + v3_rr)
p_avg = 0.5 * (p_ll + p_rr)
velocity_square_avg = 0.5 * (v1_ll * v1_rr + v2_ll * v2_rr + v3_ll * v3_rr)
magnetic_square_avg = 0.5 * (B1_ll * B1_rr + B2_ll * B2_rr + B3_ll * B3_rr)
v1_avg = 0.5f0 * (v1_ll + v1_rr)
v2_avg = 0.5f0 * (v2_ll + v2_rr)
v3_avg = 0.5f0 * (v3_ll + v3_rr)
p_avg = 0.5f0 * (p_ll + p_rr)
velocity_square_avg = 0.5f0 * (v1_ll * v1_rr + v2_ll * v2_rr + v3_ll * v3_rr)
magnetic_square_avg = 0.5f0 * (B1_ll * B1_rr + B2_ll * B2_rr + B3_ll * B3_rr)

# Calculate fluxes depending on orientation with specific direction averages
f1 = rho_mean * v1_avg
f2 = f1 * v1_avg + p_avg + magnetic_square_avg -
0.5 * (B1_ll * B1_rr + B1_rr * B1_ll)
f3 = f1 * v2_avg - 0.5 * (B1_ll * B2_rr + B1_rr * B2_ll)
f4 = f1 * v3_avg - 0.5 * (B1_ll * B3_rr + B1_rr * B3_ll)
0.5f0 * (B1_ll * B1_rr + B1_rr * B1_ll)
f3 = f1 * v2_avg - 0.5f0 * (B1_ll * B2_rr + B1_rr * B2_ll)
f4 = f1 * v3_avg - 0.5f0 * (B1_ll * B3_rr + B1_rr * B3_ll)
#f5 below
f6 = 0.0
f7 = 0.5 * (v1_ll * B2_ll - v2_ll * B1_ll + v1_rr * B2_rr - v2_rr * B1_rr)
f8 = 0.5 * (v1_ll * B3_ll - v3_ll * B1_ll + v1_rr * B3_rr - v3_rr * B1_rr)
f6 = 0
f7 = 0.5f0 * (v1_ll * B2_ll - v2_ll * B1_ll + v1_rr * B2_rr - v2_rr * B1_rr)
f8 = 0.5f0 * (v1_ll * B3_ll - v3_ll * B1_ll + v1_rr * B3_rr - v3_rr * B1_rr)
# total energy flux is complicated and involves the previous components
f5 = (f1 * (velocity_square_avg + inv_rho_p_mean * equations.inv_gamma_minus_one)
+
0.5 * (+p_ll * v1_rr + p_rr * v1_ll
0.5f0 * (+p_ll * v1_rr + p_rr * v1_ll
+ (v1_ll * B2_ll * B2_rr + v1_rr * B2_rr * B2_ll)
+ (v1_ll * B3_ll * B3_rr + v1_rr * B3_rr * B3_ll)
-
Expand All @@ -273,8 +276,8 @@ function flux_hllc(u_ll, u_rr, orientation::Integer,
rho_rr, v1_rr, v2_rr, v3_rr, p_rr, B1_rr, B2_rr, B3_rr = cons2prim(u_rr, equations)

# Total pressure, i.e., thermal + magnetic pressures (eq. (12))
p_tot_ll = p_ll + 0.5 * (B1_ll^2 + B2_ll^2 + B3_ll^2)
p_tot_rr = p_rr + 0.5 * (B1_rr^2 + B2_rr^2 + B3_rr^2)
p_tot_ll = p_ll + 0.5f0 * (B1_ll^2 + B2_ll^2 + B3_ll^2)
p_tot_rr = p_rr + 0.5f0 * (B1_rr^2 + B2_rr^2 + B3_rr^2)

# Conserved variables
rho_v1_ll = u_ll[2]
Expand Down Expand Up @@ -502,8 +505,8 @@ end
v2 = rho_v2 / rho
v3 = rho_v3 / rho
p = (equations.gamma - 1) * (rho_e -
0.5 * (rho_v1 * v1 + rho_v2 * v2 + rho_v3 * v3
+ B1 * B1 + B2 * B2 + B3 * B3))
0.5f0 * (rho_v1 * v1 + rho_v2 * v2 + rho_v3 * v3
+ B1 * B1 + B2 * B2 + B3 * B3))

return SVector(rho, v1, v2, v3, p, B1, B2, B3)
end
Expand All @@ -517,11 +520,11 @@ end
v3 = rho_v3 / rho
v_square = v1^2 + v2^2 + v3^2
p = (equations.gamma - 1) *
(rho_e - 0.5 * rho * v_square - 0.5 * (B1^2 + B2^2 + B3^2))
(rho_e - 0.5f0 * rho * v_square - 0.5f0 * (B1^2 + B2^2 + B3^2))
s = log(p) - equations.gamma * log(rho)
rho_p = rho / p

w1 = (equations.gamma - s) / (equations.gamma - 1) - 0.5 * rho_p * v_square
w1 = (equations.gamma - s) / (equations.gamma - 1) - 0.5f0 * rho_p * v_square
w2 = rho_p * v1
w3 = rho_p * v2
w4 = rho_p * v3
Expand All @@ -541,8 +544,8 @@ end
rho_v2 = rho * v2
rho_v3 = rho * v3
rho_e = p / (equations.gamma - 1) +
0.5 * (rho_v1 * v1 + rho_v2 * v2 + rho_v3 * v3) +
0.5 * (B1^2 + B2^2 + B3^2)
0.5f0 * (rho_v1 * v1 + rho_v2 * v2 + rho_v3 * v3) +
0.5f0 * (B1^2 + B2^2 + B3^2)

return SVector(rho, rho_v1, rho_v2, rho_v3, rho_e, B1, B2, B3)
end
Expand All @@ -554,17 +557,17 @@ end

@inline function pressure(u, equations::IdealGlmMhdEquations1D)
rho, rho_v1, rho_v2, rho_v3, rho_e, B1, B2, B3 = u
p = (equations.gamma - 1) * (rho_e - 0.5 * (rho_v1^2 + rho_v2^2 + rho_v3^2) / rho
p = (equations.gamma - 1) * (rho_e - 0.5f0 * (rho_v1^2 + rho_v2^2 + rho_v3^2) / rho
-
0.5 * (B1^2 + B2^2 + B3^2))
0.5f0 * (B1^2 + B2^2 + B3^2))
return p
end

@inline function density_pressure(u, equations::IdealGlmMhdEquations1D)
rho, rho_v1, rho_v2, rho_v3, rho_e, B1, B2, B3 = u
p = (equations.gamma - 1) * (rho_e - 0.5 * (rho_v1^2 + rho_v2^2 + rho_v3^2) / rho
p = (equations.gamma - 1) * (rho_e - 0.5f0 * (rho_v1^2 + rho_v2^2 + rho_v3^2) / rho
-
0.5 * (B1^2 + B2^2 + B3^2))
0.5f0 * (B1^2 + B2^2 + B3^2))
return rho * p
end

Expand All @@ -576,16 +579,16 @@ end
v3 = rho_v3 / rho
v_mag = sqrt(v1^2 + v2^2 + v3^2)
p = (equations.gamma - 1) *
(rho_e - 0.5 * rho * v_mag^2 - 0.5 * (B1^2 + B2^2 + B3^2))
(rho_e - 0.5f0 * rho * v_mag^2 - 0.5f0 * (B1^2 + B2^2 + B3^2))
a_square = equations.gamma * p / rho
sqrt_rho = sqrt(rho)
b1 = B1 / sqrt_rho
b2 = B2 / sqrt_rho
b3 = B3 / sqrt_rho
b_square = b1^2 + b2^2 + b3^2

c_f = sqrt(0.5 * (a_square + b_square) +
0.5 * sqrt((a_square + b_square)^2 - 4.0 * a_square * b1^2))
c_f = sqrt(0.5f0 * (a_square + b_square) +
0.5f0 * sqrt((a_square + b_square)^2 - 4 * a_square * b1^2))
return c_f
end

Expand All @@ -611,25 +614,25 @@ as given by
vel_norm_ll = v1_ll^2 + v2_ll^2 + v3_ll^2
mag_norm_ll = B1_ll^2 + B2_ll^2 + B3_ll^2
p_ll = (equations.gamma - 1) *
(rho_e_ll - 0.5 * rho_ll * vel_norm_ll - 0.5 * mag_norm_ll)
(rho_e_ll - 0.5f0 * rho_ll * vel_norm_ll - 0.5f0 * mag_norm_ll)

v1_rr = rho_v1_rr / rho_rr
v2_rr = rho_v2_rr / rho_rr
v3_rr = rho_v3_rr / rho_rr
vel_norm_rr = v1_rr^2 + v2_rr^2 + v3_rr^2
mag_norm_rr = B1_rr^2 + B2_rr^2 + B3_rr^2
p_rr = (equations.gamma - 1) *
(rho_e_rr - 0.5 * rho_rr * vel_norm_rr - 0.5 * mag_norm_rr)
(rho_e_rr - 0.5f0 * rho_rr * vel_norm_rr - 0.5f0 * mag_norm_rr)

# compute total pressure which is thermal + magnetic pressures
p_total_ll = p_ll + 0.5 * mag_norm_ll
p_total_rr = p_rr + 0.5 * mag_norm_rr
p_total_ll = p_ll + 0.5f0 * mag_norm_ll
p_total_rr = p_rr + 0.5f0 * mag_norm_rr

# compute the Roe density averages
sqrt_rho_ll = sqrt(rho_ll)
sqrt_rho_rr = sqrt(rho_rr)
inv_sqrt_rho_add = 1.0 / (sqrt_rho_ll + sqrt_rho_rr)
inv_sqrt_rho_prod = 1.0 / (sqrt_rho_ll * sqrt_rho_rr)
inv_sqrt_rho_add = 1 / (sqrt_rho_ll + sqrt_rho_rr)
inv_sqrt_rho_prod = 1 / (sqrt_rho_ll * sqrt_rho_rr)
rho_ll_roe = sqrt_rho_ll * inv_sqrt_rho_add
rho_rr_roe = sqrt_rho_rr * inv_sqrt_rho_add
# Roe averages
Expand All @@ -645,19 +648,19 @@ as given by
H_rr = (rho_e_rr + p_total_rr) / rho_rr
H_roe = H_ll * rho_ll_roe + H_rr * rho_rr_roe
# temporary variable see equations (4.12) in Cargo and Gallice
X = 0.5 * ((B1_ll - B1_rr)^2 + (B2_ll - B2_rr)^2 + (B3_ll - B3_rr)^2) *
X = 0.5f0 * ((B1_ll - B1_rr)^2 + (B2_ll - B2_rr)^2 + (B3_ll - B3_rr)^2) *
inv_sqrt_rho_add^2
# averaged components needed to compute c_f, the fast magnetoacoustic wave speed
b_square_roe = (B1_roe^2 + B2_roe^2 + B3_roe^2) * inv_sqrt_rho_prod # scaled magnectic sum
a_square_roe = ((2.0 - equations.gamma) * X +
(equations.gamma - 1.0) *
(H_roe - 0.5 * (v1_roe^2 + v2_roe^2 + v3_roe^2) -
a_square_roe = ((2 - equations.gamma) * X +
(equations.gamma - 1) *
(H_roe - 0.5f0 * (v1_roe^2 + v2_roe^2 + v3_roe^2) -
b_square_roe)) # acoustic speed
# finally compute the average wave speed and set the output velocity
# Ignore orientation since it is always "1" in 1D
c_a_roe = B1_roe^2 * inv_sqrt_rho_prod # (squared) Alfvén wave speed
a_star_roe = sqrt((a_square_roe + b_square_roe)^2 - 4.0 * a_square_roe * c_a_roe)
c_f_roe = sqrt(0.5 * (a_square_roe + b_square_roe + a_star_roe))
a_star_roe = sqrt((a_square_roe + b_square_roe)^2 - 4 * a_square_roe * c_a_roe)
c_f_roe = sqrt(0.5f0 * (a_square_roe + b_square_roe + a_star_roe))

return v1_roe, c_f_roe
end
Expand All @@ -666,9 +669,9 @@ end
@inline function entropy_thermodynamic(cons, equations::IdealGlmMhdEquations1D)
# Pressure
p = (equations.gamma - 1) *
(cons[5] - 1 / 2 * (cons[2]^2 + cons[3]^2 + cons[4]^2) / cons[1]
(cons[5] - 0.5f0 * (cons[2]^2 + cons[3]^2 + cons[4]^2) / cons[1]
-
1 / 2 * (cons[6]^2 + cons[7]^2 + cons[8]^2))
0.5f0 * (cons[6]^2 + cons[7]^2 + cons[8]^2))

# Thermodynamic entropy
s = log(p) - equations.gamma * log(cons[1])
Expand All @@ -691,13 +694,13 @@ end

# Calculate kinetic energy for a conservative state `cons`
@inline function energy_kinetic(cons, equations::IdealGlmMhdEquations1D)
return 0.5 * (cons[2]^2 + cons[3]^2 + cons[4]^2) / cons[1]
return 0.5f0 * (cons[2]^2 + cons[3]^2 + cons[4]^2) / cons[1]
end

# Calculate the magnetic energy for a conservative state `cons'.
# OBS! For non-dinmensional form of the ideal MHD magnetic pressure ≡ magnetic energy
@inline function energy_magnetic(cons, ::IdealGlmMhdEquations1D)
return 0.5 * (cons[6]^2 + cons[7]^2 + cons[8]^2)
return 0.5f0 * (cons[6]^2 + cons[7]^2 + cons[8]^2)
end

# Calculate internal energy for a conservative state `cons`
Expand Down
Loading

0 comments on commit 220d5fe

Please sign in to comment.