Skip to content

Commit

Permalink
Revert "Add function to calculate optimal CFL number for PERK2 integr…
Browse files Browse the repository at this point in the history
…ator and…"

This reverts commit 8cfa2d3.
  • Loading branch information
DanielDoehring authored Sep 17, 2024
1 parent 8cfa2d3 commit 3c12508
Show file tree
Hide file tree
Showing 4 changed files with 10 additions and 136 deletions.
84 changes: 0 additions & 84 deletions examples/tree_1d_dgsem/elixir_advection_perk2_optimal_cfl.jl

This file was deleted.

41 changes: 9 additions & 32 deletions src/time_integration/paired_explicit_runge_kutta/methods_PERK2.jl
Original file line number Diff line number Diff line change
Expand Up @@ -68,14 +68,15 @@ function compute_PairedExplicitRK2_butcher_tableau(num_stages, eig_vals, tspan,
a_matrix[:, 1] -= A
a_matrix[:, 2] = A

return a_matrix, c, dt_opt
return a_matrix, c
end

# Compute the Butcher tableau for a paired explicit Runge-Kutta method order 2
# using provided monomial coefficients file
function compute_PairedExplicitRK2_butcher_tableau(num_stages,
base_path_monomial_coeffs::AbstractString,
bS, cS)

# c Vector form Butcher Tableau (defines timestep per stage)
c = zeros(num_stages)
for k in 2:num_stages
Expand Down Expand Up @@ -106,7 +107,7 @@ function compute_PairedExplicitRK2_butcher_tableau(num_stages,
end

@doc raw"""
PairedExplicitRK2(num_stages, base_path_monomial_coeffs::AbstractString, dt_opt,
PairedExplicitRK2(num_stages, base_path_monomial_coeffs::AbstractString,
bS = 1.0, cS = 0.5)
PairedExplicitRK2(num_stages, tspan, semi::AbstractSemidiscretization;
verbose = false, bS = 1.0, cS = 0.5)
Expand All @@ -117,7 +118,6 @@ end
- `base_path_monomial_coeffs` (`AbstractString`): Path to a file containing
monomial coefficients of the stability polynomial of PERK method.
The coefficients should be stored in a text file at `joinpath(base_path_monomial_coeffs, "gamma_$(num_stages).txt")` and separated by line breaks.
- `dt_opt` (`Float64`): Optimal time step size for the simulation setup.
- `tspan`: Time span of the simulation.
- `semi` (`AbstractSemidiscretization`): Semidiscretization setup.
- `eig_vals` (`Vector{ComplexF64}`): Eigenvalues of the Jacobian of the right-hand side (rhs) of the ODEProblem after the
Expand All @@ -144,19 +144,16 @@ mutable struct PairedExplicitRK2 <: AbstractPairedExplicitRKSingle
b1::Float64
bS::Float64
cS::Float64
dt_opt::Float64
end # struct PairedExplicitRK2

# Constructor that reads the coefficients from a file
function PairedExplicitRK2(num_stages, base_path_monomial_coeffs::AbstractString,
dt_opt,
bS = 1.0, cS = 0.5)
# If the user has the monomial coefficients, they also must have the optimal time step
a_matrix, c = compute_PairedExplicitRK2_butcher_tableau(num_stages,
base_path_monomial_coeffs,
bS, cS)

return PairedExplicitRK2(num_stages, a_matrix, c, 1 - bS, bS, cS, dt_opt)
return PairedExplicitRK2(num_stages, a_matrix, c, 1 - bS, bS, cS)
end

# Constructor that calculates the coefficients with polynomial optimizer from a
Expand All @@ -174,12 +171,12 @@ end
function PairedExplicitRK2(num_stages, tspan, eig_vals::Vector{ComplexF64};
verbose = false,
bS = 1.0, cS = 0.5)
a_matrix, c, dt_opt = compute_PairedExplicitRK2_butcher_tableau(num_stages,
eig_vals, tspan,
bS, cS;
verbose)
a_matrix, c = compute_PairedExplicitRK2_butcher_tableau(num_stages,
eig_vals, tspan,
bS, cS;
verbose)

return PairedExplicitRK2(num_stages, a_matrix, c, 1 - bS, bS, cS, dt_opt)
return PairedExplicitRK2(num_stages, a_matrix, c, 1 - bS, bS, cS)
end

# This struct is needed to fake https://github.com/SciML/OrdinaryDiffEq.jl/blob/0c2048a502101647ac35faabd80da8a5645beac7/src/integrators/type.jl#L1
Expand Down Expand Up @@ -235,26 +232,6 @@ mutable struct PairedExplicitRK2Integrator{RealT <: Real, uType, Params, Sol, F,
k_higher::uType
end

"""
calculate_cfl(ode_algorithm::AbstractPairedExplicitRKSingle, ode)
This function computes the CFL number once using the initial condition of the problem and the optimal timestep (`dt_opt`) from the ODE algorithm.
"""
function calculate_cfl(ode_algorithm::AbstractPairedExplicitRKSingle, ode)
t0 = first(ode.tspan)
u_ode = ode.u0
semi = ode.p
dt_opt = ode_algorithm.dt_opt

mesh, equations, solver, cache = mesh_equations_solver_cache(semi)
u = wrap_array(u_ode, mesh, equations, solver, cache)

cfl_number = dt_opt / max_dt(u, t0, mesh,
have_constant_speed(equations), equations,
solver, cache)
return cfl_number
end

"""
add_tstop!(integrator::PairedExplicitRK2Integrator, t)
Add a time stop during the time integration process.
Expand Down
19 changes: 0 additions & 19 deletions test/test_tree_1d_advection.jl
Original file line number Diff line number Diff line change
Expand Up @@ -123,25 +123,6 @@ end
@test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 8000
end
end

# Testing the second-order paired explicit Runge-Kutta (PERK) method with the optimal CFL number
@trixi_testset "elixir_advection_perk2_optimal_cfl.jl" begin
@test_trixi_include(joinpath(EXAMPLES_DIR, "elixir_advection_perk2_optimal_cfl.jl"),
l2=[0.0009700887119146429],
linf=[0.00137209242077041])
# Ensure that we do not have excessive memory allocations
# (e.g., from type instabilities)
let
t = sol.t[end]
u_ode = sol.u[end]
du_ode = similar(u_ode)
# Larger values for allowed allocations due to usage of custom
# integrator which are not *recorded* for the methods from
# OrdinaryDiffEq.jl
# Corresponding issue: https://github.com/trixi-framework/Trixi.jl/issues/1877
@test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 8000
end
end
end

end # module
2 changes: 1 addition & 1 deletion test/test_unit.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1671,7 +1671,7 @@ end
Trixi.download("https://gist.githubusercontent.com/DanielDoehring/8db0808b6f80e59420c8632c0d8e2901/raw/39aacf3c737cd642636dd78592dbdfe4cb9499af/MonCoeffsS6p2.txt",
joinpath(path_coeff_file, "gamma_6.txt"))

ode_algorithm = Trixi.PairedExplicitRK2(6, path_coeff_file, 42) # dummy optimal time step (dt_opt plays no role in determining `a_matrix`)
ode_algorithm = Trixi.PairedExplicitRK2(6, path_coeff_file)

@test isapprox(ode_algorithm.a_matrix,
[0.12405417889682908 0.07594582110317093
Expand Down

0 comments on commit 3c12508

Please sign in to comment.