Skip to content

Commit

Permalink
Added temptative example elixir for coupled GlmMhd equations.
Browse files Browse the repository at this point in the history
This requires the modified callback for the GLM cleaning speed.
  • Loading branch information
iomsn committed Feb 12, 2024
1 parent 52c674f commit 8136c5f
Showing 1 changed file with 138 additions and 0 deletions.
138 changes: 138 additions & 0 deletions examples/structured_2d_dgsem/elixir_mhd_coupled.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,138 @@
using OrdinaryDiffEq
using Trixi

###############################################################################
# Coupled semidiscretization of two ideal glmMhd systems using converter functions such that
# they are also coupled across the domain boundaries to generate a periodic system.
#
# In this elixir, we have a square domain that is divided into a left and right half.
# On each half of the domain, a completely independent SemidiscretizationHyperbolic is created for the
# linear ideal glmMhd equations. The four systems are coupled in the x and y-direction.
# For a high-level overview, see also the figure below:
#
# (-2, 2) ( 2, 2)
# ┌────────────────────┬────────────────────┐
# │ ↑ periodic ↑ │ ↑ periodic ↑ │
# │ │ │
# │ ========= │ ========= │
# │ system #1 │ system #2 │
# │ ========= │ ========= │
# │ │ │
# │<-- coupled │<-- coupled │
# │ coupled -->│ coupled -->│
# │ │ │
# │ ↓ periodic ↓ │ ↓ periodic ↓ │
# └────────────────────┴────────────────────┘
# (-2, -2) ( 2, -2)


equations = IdealGlmMhdEquations2D(1.4)

cells_per_dimension = (32, 64)

volume_flux = (flux_hindenlang_gassner, flux_nonconservative_powell)
solver = DGSEM(polydeg = 3,
surface_flux = (flux_lax_friedrichs, flux_nonconservative_powell),
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

function initial_condition_constant(x, t, equations::IdealGlmMhdEquations2D)
rho = 1.0
v1 = 0.0
v2 = 0.0
v3 = 0.0
p = rho^equations.gamma
B1 = 0.0
B2 = 0.0
B3 = 0.0
psi = 0.0
return prim2cons(SVector(rho, v1, v2, v3, p, B1, B2, B3, psi), equations)
end

###########
# system #1
###########

initial_condition1 = initial_condition_constant
coordinates_min1 = (-2.0, -2.0)
coordinates_max1 = ( 0.0, 2.0)
mesh1 = StructuredMesh(cells_per_dimension,
coordinates_min1,
coordinates_max1)

coupling_function1 = (x, u, equations_other, equations_own) -> u
boundary_conditions1 = (
x_neg=BoundaryConditionCoupled(2, (:end, :i_forward), Float64, coupling_function1),
x_pos=BoundaryConditionCoupled(2, (:begin, :i_forward), Float64, coupling_function1),
y_neg=boundary_condition_periodic,
y_pos=boundary_condition_periodic,
)

semi1 = SemidiscretizationHyperbolic(mesh1, equations, initial_condition1, solver,
boundary_conditions=boundary_conditions1)

###########
# system #2
###########

initial_condition2 = initial_condition_constant
coordinates_min2 = ( 0.0, -2.0)
coordinates_max2 = ( 2.0, 2.0)
mesh2 = StructuredMesh(cells_per_dimension,
coordinates_min2,
coordinates_max2)

coupling_function2 = (x, u, equations_other, equations_own) -> u
boundary_conditions2 = (
x_neg=BoundaryConditionCoupled(1, (:end, :i_forward), Float64, coupling_function2),
x_pos=BoundaryConditionCoupled(1, (:begin, :i_forward), Float64, coupling_function2),
y_neg=boundary_condition_periodic,
y_pos=boundary_condition_periodic,
)

semi2 = SemidiscretizationHyperbolic(mesh2, equations, initial_condition2, solver,
boundary_conditions=boundary_conditions2)

# Create a semidiscretization that bundles all the semidiscretizations.
semi = SemidiscretizationCoupled(semi1, semi2)

###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 0.1)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 100

analysis_callback1 = AnalysisCallback(semi1, interval=100)
analysis_callback2 = AnalysisCallback(semi2, interval=100)
analysis_callback = AnalysisCallbackCoupled(semi, analysis_callback1, analysis_callback2)

alive_callback = AliveCallback(analysis_interval=analysis_interval)

save_solution = SaveSolutionCallback(interval=50,
save_initial_solution=true,
save_final_solution=true,
solution_variables=cons2prim)

cfl = 1.0

stepsize_callback = StepsizeCallback(cfl=cfl)

glm_speed_callback = GlmSpeedCallback(glm_scale=0.5, cfl=cfl, semi_indices=tuple(1))

callbacks = CallbackSet(summary_callback,
analysis_callback, alive_callback,
save_solution,
stepsize_callback,
glm_speed_callback)


###############################################################################
# run the simulation

sol = solve(ode, CarpenterKennedy2N54(williamson_condition=false),
dt=0.01, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep=false, callback=callbacks);
summary_callback() # print the timer summary

0 comments on commit 8136c5f

Please sign in to comment.