-
Notifications
You must be signed in to change notification settings - Fork 114
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added temptative example elixir for coupled GlmMhd equations.
This requires the modified callback for the GLM cleaning speed.
- Loading branch information
Showing
1 changed file
with
138 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
using OrdinaryDiffEq | ||
using Trixi | ||
|
||
############################################################################### | ||
# Coupled semidiscretization of two ideal glmMhd systems using converter functions such that | ||
# they are also coupled across the domain boundaries to generate a periodic system. | ||
# | ||
# In this elixir, we have a square domain that is divided into a left and right half. | ||
# On each half of the domain, a completely independent SemidiscretizationHyperbolic is created for the | ||
# linear ideal glmMhd equations. The four systems are coupled in the x and y-direction. | ||
# For a high-level overview, see also the figure below: | ||
# | ||
# (-2, 2) ( 2, 2) | ||
# ┌────────────────────┬────────────────────┐ | ||
# │ ↑ periodic ↑ │ ↑ periodic ↑ │ | ||
# │ │ │ | ||
# │ ========= │ ========= │ | ||
# │ system #1 │ system #2 │ | ||
# │ ========= │ ========= │ | ||
# │ │ │ | ||
# │<-- coupled │<-- coupled │ | ||
# │ coupled -->│ coupled -->│ | ||
# │ │ │ | ||
# │ ↓ periodic ↓ │ ↓ periodic ↓ │ | ||
# └────────────────────┴────────────────────┘ | ||
# (-2, -2) ( 2, -2) | ||
|
||
|
||
equations = IdealGlmMhdEquations2D(1.4) | ||
|
||
cells_per_dimension = (32, 64) | ||
|
||
volume_flux = (flux_hindenlang_gassner, flux_nonconservative_powell) | ||
solver = DGSEM(polydeg = 3, | ||
surface_flux = (flux_lax_friedrichs, flux_nonconservative_powell), | ||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
function initial_condition_constant(x, t, equations::IdealGlmMhdEquations2D) | ||
rho = 1.0 | ||
v1 = 0.0 | ||
v2 = 0.0 | ||
v3 = 0.0 | ||
p = rho^equations.gamma | ||
B1 = 0.0 | ||
B2 = 0.0 | ||
B3 = 0.0 | ||
psi = 0.0 | ||
return prim2cons(SVector(rho, v1, v2, v3, p, B1, B2, B3, psi), equations) | ||
end | ||
|
||
########### | ||
# system #1 | ||
########### | ||
|
||
initial_condition1 = initial_condition_constant | ||
coordinates_min1 = (-2.0, -2.0) | ||
coordinates_max1 = ( 0.0, 2.0) | ||
mesh1 = StructuredMesh(cells_per_dimension, | ||
coordinates_min1, | ||
coordinates_max1) | ||
|
||
coupling_function1 = (x, u, equations_other, equations_own) -> u | ||
boundary_conditions1 = ( | ||
x_neg=BoundaryConditionCoupled(2, (:end, :i_forward), Float64, coupling_function1), | ||
x_pos=BoundaryConditionCoupled(2, (:begin, :i_forward), Float64, coupling_function1), | ||
y_neg=boundary_condition_periodic, | ||
y_pos=boundary_condition_periodic, | ||
) | ||
|
||
semi1 = SemidiscretizationHyperbolic(mesh1, equations, initial_condition1, solver, | ||
boundary_conditions=boundary_conditions1) | ||
|
||
########### | ||
# system #2 | ||
########### | ||
|
||
initial_condition2 = initial_condition_constant | ||
coordinates_min2 = ( 0.0, -2.0) | ||
coordinates_max2 = ( 2.0, 2.0) | ||
mesh2 = StructuredMesh(cells_per_dimension, | ||
coordinates_min2, | ||
coordinates_max2) | ||
|
||
coupling_function2 = (x, u, equations_other, equations_own) -> u | ||
boundary_conditions2 = ( | ||
x_neg=BoundaryConditionCoupled(1, (:end, :i_forward), Float64, coupling_function2), | ||
x_pos=BoundaryConditionCoupled(1, (:begin, :i_forward), Float64, coupling_function2), | ||
y_neg=boundary_condition_periodic, | ||
y_pos=boundary_condition_periodic, | ||
) | ||
|
||
semi2 = SemidiscretizationHyperbolic(mesh2, equations, initial_condition2, solver, | ||
boundary_conditions=boundary_conditions2) | ||
|
||
# Create a semidiscretization that bundles all the semidiscretizations. | ||
semi = SemidiscretizationCoupled(semi1, semi2) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 0.1) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 100 | ||
|
||
analysis_callback1 = AnalysisCallback(semi1, interval=100) | ||
analysis_callback2 = AnalysisCallback(semi2, interval=100) | ||
analysis_callback = AnalysisCallbackCoupled(semi, analysis_callback1, analysis_callback2) | ||
|
||
alive_callback = AliveCallback(analysis_interval=analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval=50, | ||
save_initial_solution=true, | ||
save_final_solution=true, | ||
solution_variables=cons2prim) | ||
|
||
cfl = 1.0 | ||
|
||
stepsize_callback = StepsizeCallback(cfl=cfl) | ||
|
||
glm_speed_callback = GlmSpeedCallback(glm_scale=0.5, cfl=cfl, semi_indices=tuple(1)) | ||
|
||
callbacks = CallbackSet(summary_callback, | ||
analysis_callback, alive_callback, | ||
save_solution, | ||
stepsize_callback, | ||
glm_speed_callback) | ||
|
||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
sol = solve(ode, CarpenterKennedy2N54(williamson_condition=false), | ||
dt=0.01, # solve needs some value here but it will be overwritten by the stepsize_callback | ||
save_everystep=false, callback=callbacks); | ||
summary_callback() # print the timer summary |