Skip to content

Commit

Permalink
Merge branch 'main' into SSPtimemethod-fixedtimestep
Browse files Browse the repository at this point in the history
  • Loading branch information
bennibolm authored May 3, 2024
2 parents de9fa77 + cd097fc commit 9f0d930
Show file tree
Hide file tree
Showing 6 changed files with 284 additions and 14 deletions.
1 change: 1 addition & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@ for human readability.
to 1D and 3D on `TreeMesh`.
- Implementation of 1D Linearized Euler Equations.
- New analysis callback for 2D `P4estMesh` to compute integrated quantities along a boundary surface, e.g., pressure lift and drag coefficients.
- Optional tuple parameter for `GlmSpeedCallback` called `semi_indices` to specify for which semidiscretization of a `SemidiscretizationCoupled` we need to update the GLM speed.

## Changes when updating to v0.7 from v0.6.x

Expand Down
11 changes: 11 additions & 0 deletions docs/src/multi-physics_coupling.md
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,17 @@ By passing the equations we can make use of their parameters, if they are requir
Examples can be seen in `examples/structured_2d_dgsem/elixir_advection_coupled.jl`.


## GlmSpeedCallback for coupled MHD simulations

When simulating an MHD system and the [`GlmSpeedCallback`](@ref) is required,
we need to specify for which semidiscretization we need the GLM speed updated.
This can be done with an additional parameter called `semi_indices`, which
is a tuple containing the semidiscretization indices for all systems
that require the GLM speed updated.

An example elixir can be found at [`examples/structured_2d_dgsem/elixir_mhd_coupled.jl`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/structured_2d_dgsem/elixir_mhd_coupled.jl).


## Warning about binary compatibility
Currently the coordinate values on the nodes can differ by machine precision when
simulating the mesh and when splitting the mesh in multiple domains.
Expand Down
136 changes: 136 additions & 0 deletions examples/structured_2d_dgsem/elixir_mhd_coupled.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,136 @@
using OrdinaryDiffEq
using Trixi

###############################################################################
# Two semidiscretizations of the ideal GLM-MHD systems using converter functions such that
# they are coupled across the domain boundaries to generate a periodic system.
#
# In this elixir, we have a square domain that is divided into a left and right half.
# On each half of the domain, an independent SemidiscretizationHyperbolic is created for
# each set of ideal GLM-MHD equations. The two systems are coupled in the x-direction
# and are periodic in the y-direction.
# For a high-level overview, see also the figure below:
#
# (-2, 2) ( 2, 2)
# ┌────────────────────┬────────────────────┐
# │ ↑ periodic ↑ │ ↑ periodic ↑ │
# │ │ │
# │ ========= │ ========= │
# │ system #1 │ system #2 │
# │ ========= │ ========= │
# │ │ │
# │<-- coupled │<-- coupled │
# │ coupled -->│ coupled -->│
# │ │ │
# │ ↓ periodic ↓ │ ↓ periodic ↓ │
# └────────────────────┴────────────────────┘
# (-2, -2) ( 2, -2)

gamma = 5 / 3
equations = IdealGlmMhdEquations2D(gamma)

cells_per_dimension = (32, 64)

# Extend the definition of the non-conservative Powell flux functions.
import Trixi.flux_nonconservative_powell
function flux_nonconservative_powell(u_ll, u_rr,
normal_direction_ll::AbstractVector,
equations::IdealGlmMhdEquations2D)
flux_nonconservative_powell(u_ll, u_rr, normal_direction_ll, normal_direction_ll,
equations)
end
volume_flux = (flux_hindenlang_gassner, flux_nonconservative_powell)
solver = DGSEM(polydeg = 3,
surface_flux = (flux_lax_friedrichs, flux_nonconservative_powell),
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

###########
# system #1
###########

initial_condition1 = initial_condition_convergence_test
coordinates_min1 = (-1 / sin(pi / 4), -1 / sin(pi / 4))
coordinates_max1 = (0.0, 1 / sin(pi / 4))
mesh1 = StructuredMesh(cells_per_dimension,
coordinates_min1,
coordinates_max1,
periodicity = (false, true))

coupling_function1 = (x, u, equations_other, equations_own) -> u
boundary_conditions1 = (x_neg = BoundaryConditionCoupled(2, (:end, :i_forward), Float64,
coupling_function1),
x_pos = BoundaryConditionCoupled(2, (:begin, :i_forward), Float64,
coupling_function1),
y_neg = boundary_condition_periodic,
y_pos = boundary_condition_periodic)

semi1 = SemidiscretizationHyperbolic(mesh1, equations, initial_condition1, solver,
boundary_conditions = boundary_conditions1)

###########
# system #2
###########

initial_condition2 = initial_condition_convergence_test
coordinates_min2 = (0.0, -1 / sin(pi / 4))
coordinates_max2 = (1 / sin(pi / 4), 1 / sin(pi / 4))
mesh2 = StructuredMesh(cells_per_dimension,
coordinates_min2,
coordinates_max2,
periodicity = (false, true))

coupling_function2 = (x, u, equations_other, equations_own) -> u
boundary_conditions2 = (x_neg = BoundaryConditionCoupled(1, (:end, :i_forward), Float64,
coupling_function2),
x_pos = BoundaryConditionCoupled(1, (:begin, :i_forward), Float64,
coupling_function2),
y_neg = boundary_condition_periodic,
y_pos = boundary_condition_periodic)

semi2 = SemidiscretizationHyperbolic(mesh2, equations, initial_condition2, solver,
boundary_conditions = boundary_conditions2)

# Create a semidiscretization that bundles all the semidiscretizations.
semi = SemidiscretizationCoupled(semi1, semi2)

###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 0.1)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 100

analysis_callback1 = AnalysisCallback(semi1, interval = 100)
analysis_callback2 = AnalysisCallback(semi2, interval = 100)
analysis_callback = AnalysisCallbackCoupled(semi, analysis_callback1, analysis_callback2)

alive_callback = AliveCallback(analysis_interval = analysis_interval)

save_solution = SaveSolutionCallback(interval = 50,
save_initial_solution = true,
save_final_solution = true,
solution_variables = cons2prim)

cfl = 1.0

stepsize_callback = StepsizeCallback(cfl = cfl)

glm_speed_callback = GlmSpeedCallback(glm_scale = 0.5, cfl = cfl,
semi_indices = [1, 2])

callbacks = CallbackSet(summary_callback,
analysis_callback, alive_callback,
save_solution,
stepsize_callback,
glm_speed_callback)

###############################################################################
# run the simulation

sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false),
dt = 0.01, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep = false, callback = callbacks);
summary_callback() # print the timer summary
39 changes: 29 additions & 10 deletions src/callbacks_step/glm_speed.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6,26 +6,34 @@
#! format: noindent

"""
GlmSpeedCallback(; glm_scale=0.5, cfl)
GlmSpeedCallback(; glm_scale=0.5, cfl, semi_indices=())
Update the divergence cleaning wave speed `c_h` according to the time step
computed in [`StepsizeCallback`](@ref) for the ideal GLM-MHD equations.
The `cfl` number should be set to the same value as for the time step size calculation. The
`glm_scale` ensures that the GLM wave speed is lower than the fastest physical waves in the MHD
solution and should thus be set to a value within the interval [0,1]. Note that `glm_scale = 0`
deactivates the divergence cleaning.
In case of coupled semidiscretizations, specify for which `semi_index`, i.e. index of the
semidiscretization, the divergence cleaning should be applied. See also
[`SemidiscretizationCoupled`](@ref).
Note: `SemidiscretizationCoupled` and all related features are considered experimental and
may change at any time.
"""
struct GlmSpeedCallback{RealT <: Real}
glm_scale::RealT
cfl::RealT
semi_indices::Vector{Int}
end

function Base.show(io::IO, cb::DiscreteCallback{<:Any, <:GlmSpeedCallback})
@nospecialize cb # reduce precompilation time

glm_speed_callback = cb.affect!
@unpack glm_scale, cfl = glm_speed_callback
print(io, "GlmSpeedCallback(glm_scale=", glm_scale, ", cfl=", cfl, ")")
@unpack glm_scale, cfl, semi_indices = glm_speed_callback
print(io, "GlmSpeedCallback(glm_scale=", glm_scale, ", cfl=", cfl, "semi_indices=",
semi_indices, ")")
end

function Base.show(io::IO, ::MIME"text/plain",
Expand All @@ -40,15 +48,16 @@ function Base.show(io::IO, ::MIME"text/plain",
setup = [
"GLM wave speed scaling" => glm_speed_callback.glm_scale,
"Expected CFL number" => glm_speed_callback.cfl,
"Selected semidiscretizations" => glm_speed_callback.semi_indices,
]
summary_box(io, "GlmSpeedCallback", setup)
end
end

function GlmSpeedCallback(; glm_scale = 0.5, cfl)
function GlmSpeedCallback(; glm_scale = 0.5, cfl, semi_indices = Int[])
@assert 0<=glm_scale<=1 "glm_scale must be between 0 and 1"

glm_speed_callback = GlmSpeedCallback(glm_scale, cfl)
glm_speed_callback = GlmSpeedCallback(glm_scale, cfl, semi_indices)

DiscreteCallback(glm_speed_callback, glm_speed_callback, # the first one is the condition, the second the affect!
save_positions = (false, false),
Expand All @@ -65,19 +74,29 @@ function (glm_speed_callback::GlmSpeedCallback)(u, t, integrator)
return true
end

# This method is called as callback after the StepsizeCallback during the time integration.
@inline function (glm_speed_callback::GlmSpeedCallback)(integrator)
dt = get_proposed_dt(integrator)
semi = integrator.p
mesh, equations, solver, cache = mesh_equations_solver_cache(semi)
function update_cleaning_speed!(semi, glm_speed_callback, dt)
@unpack glm_scale, cfl = glm_speed_callback

mesh, equations, solver, cache = mesh_equations_solver_cache(semi)

# compute time step for GLM linear advection equation with c_h=1 (redone due to the possible AMR)
c_h_deltat = calc_dt_for_cleaning_speed(cfl, mesh, equations, solver, cache)

# c_h is proportional to its own time step divided by the complete MHD time step
equations.c_h = glm_scale * c_h_deltat / dt

return semi
end

# This method is called as callback after the StepsizeCallback during the time integration.
@inline function (glm_speed_callback::GlmSpeedCallback)(integrator)
dt = get_proposed_dt(integrator)
semi = integrator.p

# Call the appropriate update function (this indirection allows to specialize on,
# e.g., the semidiscretization type)
update_cleaning_speed!(semi, glm_speed_callback, dt)

# avoid re-evaluating possible FSAL stages
u_modified!(integrator, false)

Expand Down
56 changes: 52 additions & 4 deletions src/semidiscretization/semidiscretization_coupled.jl
Original file line number Diff line number Diff line change
Expand Up @@ -348,6 +348,36 @@ function calculate_dt(u_ode, t, cfl_number, semi::SemidiscretizationCoupled)
return dt
end

function update_cleaning_speed!(semi_coupled::SemidiscretizationCoupled,
glm_speed_callback, dt)
@unpack glm_scale, cfl, semi_indices = glm_speed_callback

if length(semi_indices) == 0
throw("Since you have more than one semidiscretization you need to specify the 'semi_indices' for which the GLM speed needs to be calculated.")
end

# Check that all MHD semidiscretizations received a GLM cleaning speed update.
for (semi_index, semi) in enumerate(semi_coupled.semis)
if (typeof(semi.equations) <: AbstractIdealGlmMhdEquations &&
!(semi_index in semi_indices))
error("Equation of semidiscretization $semi_index needs to be included in 'semi_indices' of 'GlmSpeedCallback'.")
end
end

for semi_index in semi_indices
semi = semi_coupled.semis[semi_index]
mesh, equations, solver, cache = mesh_equations_solver_cache(semi)

# compute time step for GLM linear advection equation with c_h=1 (redone due to the possible AMR)
c_h_deltat = calc_dt_for_cleaning_speed(cfl, mesh, equations, solver, cache)

# c_h is proportional to its own time step divided by the complete MHD time step
equations.c_h = glm_scale * c_h_deltat / dt
end

return semi_coupled
end

################################################################################
### Equations
################################################################################
Expand Down Expand Up @@ -435,10 +465,28 @@ function (boundary_condition::BoundaryConditionCoupled)(u_inner, orientation, di
Val(nvariables(equations))))

# Calculate boundary flux
if iseven(direction) # u_inner is "left" of boundary, u_boundary is "right" of boundary
flux = surface_flux_function(u_inner, u_boundary, orientation, equations)
else # u_boundary is "left" of boundary, u_inner is "right" of boundary
flux = surface_flux_function(u_boundary, u_inner, orientation, equations)
if surface_flux_function isa Tuple
# In case of conservative (index 1) and non-conservative (index 2) fluxes,
# add the non-conservative one with a factor of 1/2.
if iseven(direction) # u_inner is "left" of boundary, u_boundary is "right" of boundary
flux = (surface_flux_function[1](u_inner, u_boundary, orientation,
equations) +
0.5 *
surface_flux_function[2](u_inner, u_boundary, orientation,
equations))
else # u_boundary is "left" of boundary, u_inner is "right" of boundary
flux = (surface_flux_function[1](u_boundary, u_inner, orientation,
equations) +
0.5 *
surface_flux_function[2](u_boundary, u_inner, orientation,
equations))
end
else
if iseven(direction) # u_inner is "left" of boundary, u_boundary is "right" of boundary
flux = surface_flux_function(u_inner, u_boundary, orientation, equations)
else # u_boundary is "left" of boundary, u_inner is "right" of boundary
flux = surface_flux_function(u_boundary, u_inner, orientation, equations)
end
end

return flux
Expand Down
55 changes: 55 additions & 0 deletions test/test_structured_2d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -917,6 +917,61 @@ end
@test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 1000
end
end

@trixi_testset "elixir_mhd_coupled.jl" begin
@test_trixi_include(joinpath(EXAMPLES_DIR, "elixir_mhd_coupled.jl"),
l2=[
1.0743426980507015e-7, 0.030901698521864966,
0.030901698662039206, 0.04370160129981656,
8.259193827852516e-8, 0.03090169908364623,
0.030901699039770684, 0.04370160128147447,
8.735923402748945e-9, 1.0743426996067106e-7,
0.03090169852186498, 0.030901698662039206,
0.04370160129981657, 8.259193829690747e-8,
0.03090169908364624, 0.030901699039770726,
0.04370160128147445, 8.73592340076897e-9,
],
linf=[
9.021023431587949e-7, 0.043701454182710486,
0.043701458294527366, 0.061803146322536154,
9.487023335807976e-7, 0.043701561010342616,
0.04370147392153734, 0.06180318786081025,
3.430673132525334e-8, 9.02102342825728e-7,
0.043701454182710764, 0.043701458294525895,
0.06180314632253597, 9.487023254761695e-7,
0.04370156101034084, 0.04370147392153745,
0.06180318786081015, 3.430672973680963e-8,
],
coverage_override=(maxiters = 10^5,))

@testset "analysis_callback(sol) for AnalysisCallbackCoupled" begin
errors = analysis_callback(sol)
@test errors.l2[
1.0743426980507015e-7, 0.030901698521864966, 0.030901698662039206,
0.04370160129981656, 8.259193827852516e-8, 0.03090169908364623,
0.030901699039770684, 0.04370160128147447, 8.735923402748945e-9,
1.0743426996067106e-7, 0.03090169852186498, 0.030901698662039206,
0.04370160129981657, 8.259193829690747e-8, 0.03090169908364624,
0.030901699039770726, 0.04370160128147445, 8.73592340076897e-9,
] rtol=1.0e-4
@test errors.linf[
9.021023431587949e-7, 0.043701454182710486, 0.043701458294527366,
0.061803146322536154, 9.487023335807976e-7, 0.043701561010342616,
0.04370147392153734, 0.06180318786081025, 3.430673132525334e-8,
9.02102342825728e-7, 0.043701454182710764, 0.043701458294525895,
0.06180314632253597, 9.487023254761695e-7, 0.04370156101034084,
0.04370147392153745, 0.06180318786081015, 3.430672973680963e-8,
] rtol=1.0e-4
# Ensure that we do not have excessive memory allocations
# (e.g., from type instabilities)
let
t = sol.t[end]
u_ode = sol.u[end]
du_ode = similar(u_ode)
@test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 1000
end
end
end
end

# Clean up afterwards: delete Trixi.jl output directory
Expand Down

0 comments on commit 9f0d930

Please sign in to comment.