-
Notifications
You must be signed in to change notification settings - Fork 112
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into jc/StartUpDG_0.17.7
- Loading branch information
Showing
3 changed files
with
252 additions
and
0 deletions.
There are no files selected for viewing
215 changes: 215 additions & 0 deletions
215
examples/p4est_2d_dgsem/elixir_navierstokes_convergence_nonperiodic.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,215 @@ | ||
using OrdinaryDiffEq | ||
using Trixi | ||
|
||
############################################################################### | ||
# semidiscretization of the ideal compressible Navier-Stokes equations | ||
|
||
prandtl_number() = 0.72 | ||
mu() = 0.01 | ||
|
||
equations = CompressibleEulerEquations2D(1.4) | ||
equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, mu=mu(), Prandtl=prandtl_number(), | ||
gradient_variables=GradientVariablesPrimitive()) | ||
|
||
# Create DG solver with polynomial degree = 3 and (local) Lax-Friedrichs/Rusanov flux as surface flux | ||
solver = DGSEM(polydeg=3, surface_flux=flux_lax_friedrichs, | ||
volume_integral=VolumeIntegralWeakForm()) | ||
|
||
coordinates_min = (-1.0, -1.0) # minimum coordinates (min(x), min(y)) | ||
coordinates_max = ( 1.0, 1.0) # maximum coordinates (max(x), max(y)) | ||
|
||
trees_per_dimension = (4, 4) | ||
mesh = P4estMesh(trees_per_dimension, | ||
polydeg=3, initial_refinement_level=2, | ||
coordinates_min=coordinates_min, coordinates_max=coordinates_max, | ||
periodicity=(false, false)) | ||
|
||
# Note: the initial condition cannot be specialized to `CompressibleNavierStokesDiffusion2D` | ||
# since it is called by both the parabolic solver (which passes in `CompressibleNavierStokesDiffusion2D`) | ||
# and by the initial condition (which passes in `CompressibleEulerEquations2D`). | ||
# This convergence test setup was originally derived by Andrew Winters (@andrewwinters5000) | ||
function initial_condition_navier_stokes_convergence_test(x, t, equations) | ||
# Amplitude and shift | ||
A = 0.5 | ||
c = 2.0 | ||
|
||
# convenience values for trig. functions | ||
pi_x = pi * x[1] | ||
pi_y = pi * x[2] | ||
pi_t = pi * t | ||
|
||
rho = c + A * sin(pi_x) * cos(pi_y) * cos(pi_t) | ||
v1 = sin(pi_x) * log(x[2] + 2.0) * (1.0 - exp(-A * (x[2] - 1.0)) ) * cos(pi_t) | ||
v2 = v1 | ||
p = rho^2 | ||
|
||
return prim2cons(SVector(rho, v1, v2, p), equations) | ||
end | ||
|
||
@inline function source_terms_navier_stokes_convergence_test(u, x, t, equations) | ||
y = x[2] | ||
|
||
# TODO: parabolic | ||
# we currently need to hardcode these parameters until we fix the "combined equation" issue | ||
# see also https://github.com/trixi-framework/Trixi.jl/pull/1160 | ||
inv_gamma_minus_one = inv(equations.gamma - 1) | ||
Pr = prandtl_number() | ||
mu_ = mu() | ||
|
||
# Same settings as in `initial_condition` | ||
# Amplitude and shift | ||
A = 0.5 | ||
c = 2.0 | ||
|
||
# convenience values for trig. functions | ||
pi_x = pi * x[1] | ||
pi_y = pi * x[2] | ||
pi_t = pi * t | ||
|
||
# compute the manufactured solution and all necessary derivatives | ||
rho = c + A * sin(pi_x) * cos(pi_y) * cos(pi_t) | ||
rho_t = -pi * A * sin(pi_x) * cos(pi_y) * sin(pi_t) | ||
rho_x = pi * A * cos(pi_x) * cos(pi_y) * cos(pi_t) | ||
rho_y = -pi * A * sin(pi_x) * sin(pi_y) * cos(pi_t) | ||
rho_xx = -pi * pi * A * sin(pi_x) * cos(pi_y) * cos(pi_t) | ||
rho_yy = -pi * pi * A * sin(pi_x) * cos(pi_y) * cos(pi_t) | ||
|
||
v1 = sin(pi_x) * log(y + 2.0) * (1.0 - exp(-A * (y - 1.0))) * cos(pi_t) | ||
v1_t = -pi * sin(pi_x) * log(y + 2.0) * (1.0 - exp(-A * (y - 1.0))) * sin(pi_t) | ||
v1_x = pi * cos(pi_x) * log(y + 2.0) * (1.0 - exp(-A * (y - 1.0))) * cos(pi_t) | ||
v1_y = sin(pi_x) * (A * log(y + 2.0) * exp(-A * (y - 1.0)) + (1.0 - exp(-A * (y - 1.0))) / (y + 2.0)) * cos(pi_t) | ||
v1_xx = -pi * pi * sin(pi_x) * log(y + 2.0) * (1.0 - exp(-A * (y - 1.0))) * cos(pi_t) | ||
v1_xy = pi * cos(pi_x) * (A * log(y + 2.0) * exp(-A * (y - 1.0)) + (1.0 - exp(-A * (y - 1.0))) / (y + 2.0)) * cos(pi_t) | ||
v1_yy = (sin(pi_x) * ( 2.0 * A * exp(-A * (y - 1.0)) / (y + 2.0) | ||
- A * A * log(y + 2.0) * exp(-A * (y - 1.0)) | ||
- (1.0 - exp(-A * (y - 1.0))) / ((y + 2.0) * (y + 2.0))) * cos(pi_t)) | ||
v2 = v1 | ||
v2_t = v1_t | ||
v2_x = v1_x | ||
v2_y = v1_y | ||
v2_xx = v1_xx | ||
v2_xy = v1_xy | ||
v2_yy = v1_yy | ||
|
||
p = rho * rho | ||
p_t = 2.0 * rho * rho_t | ||
p_x = 2.0 * rho * rho_x | ||
p_y = 2.0 * rho * rho_y | ||
p_xx = 2.0 * rho * rho_xx + 2.0 * rho_x * rho_x | ||
p_yy = 2.0 * rho * rho_yy + 2.0 * rho_y * rho_y | ||
|
||
# Note this simplifies slightly because the ansatz assumes that v1 = v2 | ||
E = p * inv_gamma_minus_one + 0.5 * rho * (v1^2 + v2^2) | ||
E_t = p_t * inv_gamma_minus_one + rho_t * v1^2 + 2.0 * rho * v1 * v1_t | ||
E_x = p_x * inv_gamma_minus_one + rho_x * v1^2 + 2.0 * rho * v1 * v1_x | ||
E_y = p_y * inv_gamma_minus_one + rho_y * v1^2 + 2.0 * rho * v1 * v1_y | ||
|
||
# Some convenience constants | ||
T_const = equations.gamma * inv_gamma_minus_one / Pr | ||
inv_rho_cubed = 1.0 / (rho^3) | ||
|
||
# compute the source terms | ||
# density equation | ||
du1 = rho_t + rho_x * v1 + rho * v1_x + rho_y * v2 + rho * v2_y | ||
|
||
# x-momentum equation | ||
du2 = ( rho_t * v1 + rho * v1_t + p_x + rho_x * v1^2 | ||
+ 2.0 * rho * v1 * v1_x | ||
+ rho_y * v1 * v2 | ||
+ rho * v1_y * v2 | ||
+ rho * v1 * v2_y | ||
# stress tensor from x-direction | ||
- 4.0 / 3.0 * v1_xx * mu_ | ||
+ 2.0 / 3.0 * v2_xy * mu_ | ||
- v1_yy * mu_ | ||
- v2_xy * mu_ ) | ||
# y-momentum equation | ||
du3 = ( rho_t * v2 + rho * v2_t + p_y + rho_x * v1 * v2 | ||
+ rho * v1_x * v2 | ||
+ rho * v1 * v2_x | ||
+ rho_y * v2^2 | ||
+ 2.0 * rho * v2 * v2_y | ||
# stress tensor from y-direction | ||
- v1_xy * mu_ | ||
- v2_xx * mu_ | ||
- 4.0 / 3.0 * v2_yy * mu_ | ||
+ 2.0 / 3.0 * v1_xy * mu_ ) | ||
# total energy equation | ||
du4 = ( E_t + v1_x * (E + p) + v1 * (E_x + p_x) | ||
+ v2_y * (E + p) + v2 * (E_y + p_y) | ||
# stress tensor and temperature gradient terms from x-direction | ||
- 4.0 / 3.0 * v1_xx * v1 * mu_ | ||
+ 2.0 / 3.0 * v2_xy * v1 * mu_ | ||
- 4.0 / 3.0 * v1_x * v1_x * mu_ | ||
+ 2.0 / 3.0 * v2_y * v1_x * mu_ | ||
- v1_xy * v2 * mu_ | ||
- v2_xx * v2 * mu_ | ||
- v1_y * v2_x * mu_ | ||
- v2_x * v2_x * mu_ | ||
- T_const * inv_rho_cubed * ( p_xx * rho * rho | ||
- 2.0 * p_x * rho * rho_x | ||
+ 2.0 * p * rho_x * rho_x | ||
- p * rho * rho_xx ) * mu_ | ||
# stress tensor and temperature gradient terms from y-direction | ||
- v1_yy * v1 * mu_ | ||
- v2_xy * v1 * mu_ | ||
- v1_y * v1_y * mu_ | ||
- v2_x * v1_y * mu_ | ||
- 4.0 / 3.0 * v2_yy * v2 * mu_ | ||
+ 2.0 / 3.0 * v1_xy * v2 * mu_ | ||
- 4.0 / 3.0 * v2_y * v2_y * mu_ | ||
+ 2.0 / 3.0 * v1_x * v2_y * mu_ | ||
- T_const * inv_rho_cubed * ( p_yy * rho * rho | ||
- 2.0 * p_y * rho * rho_y | ||
+ 2.0 * p * rho_y * rho_y | ||
- p * rho * rho_yy ) * mu_ ) | ||
|
||
return SVector(du1, du2, du3, du4) | ||
end | ||
|
||
initial_condition = initial_condition_navier_stokes_convergence_test | ||
|
||
# BC types | ||
velocity_bc_top_bottom = NoSlip((x, t, equations) -> initial_condition_navier_stokes_convergence_test(x, t, equations)[2:3]) | ||
heat_bc_top_bottom = Adiabatic((x, t, equations) -> 0.0) | ||
boundary_condition_top_bottom = BoundaryConditionNavierStokesWall(velocity_bc_top_bottom, heat_bc_top_bottom) | ||
|
||
boundary_condition_left_right = BoundaryConditionDirichlet(initial_condition_navier_stokes_convergence_test) | ||
|
||
# define inviscid boundary conditions | ||
boundary_conditions = Dict(:x_neg => boundary_condition_left_right, | ||
:x_pos => boundary_condition_left_right, | ||
:y_neg => boundary_condition_slip_wall, | ||
:y_pos => boundary_condition_slip_wall) | ||
|
||
# define viscous boundary conditions | ||
boundary_conditions_parabolic = Dict(:x_neg => boundary_condition_left_right, | ||
:x_pos => boundary_condition_left_right, | ||
:y_neg => boundary_condition_top_bottom, | ||
:y_pos => boundary_condition_top_bottom) | ||
|
||
semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic), initial_condition, solver; | ||
boundary_conditions=(boundary_conditions, boundary_conditions_parabolic), | ||
source_terms=source_terms_navier_stokes_convergence_test) | ||
|
||
# ############################################################################### | ||
# # ODE solvers, callbacks etc. | ||
|
||
# Create ODE problem with time span `tspan` | ||
tspan = (0.0, 0.5) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
alive_callback = AliveCallback(alive_interval=10) | ||
analysis_interval = 100 | ||
analysis_callback = AnalysisCallback(semi, interval=analysis_interval) | ||
callbacks = CallbackSet(summary_callback, alive_callback, analysis_callback) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
time_int_tol = 1e-8 | ||
sol = solve(ode, RDPK3SpFSAL49(); abstol=time_int_tol, reltol=time_int_tol, dt = 1e-5, | ||
ode_default_options()..., callback=callbacks) | ||
summary_callback() # print the timer summary | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters