-
Notifications
You must be signed in to change notification settings - Fork 112
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Remove doubled implementations * kepp main updated with true main * Avoid allocations in parabolic boundary fluxes * Correct shear layer IC * Whitespaces * Restore main * restore main * 1D Navier Stokes * Conventional notation for heat flux * remove multi-dim artefacts * Move general part into own file * Slip Wall BC for 1D Compressible Euler * Correct arguments for 1D BCs * format * Add convergence test with walls * Test gradient with entropy variables * Test isothermal BC, test gradient in entropy vars * Correct test data --------- Co-authored-by: Hendrik Ranocha <[email protected]>
- Loading branch information
1 parent
3ca93af
commit d52a041
Showing
10 changed files
with
864 additions
and
79 deletions.
There are no files selected for viewing
136 changes: 136 additions & 0 deletions
136
examples/tree_1d_dgsem/elixir_navierstokes_convergence_periodic.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,136 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
|
||
############################################################################### | ||
# semidiscretization of the compressible Navier-Stokes equations | ||
|
||
# TODO: parabolic; unify names of these accessor functions | ||
prandtl_number() = 0.72 | ||
mu() = 6.25e-4 # equivalent to Re = 1600 | ||
|
||
equations = CompressibleEulerEquations1D(1.4) | ||
equations_parabolic = CompressibleNavierStokesDiffusion1D(equations, mu=mu(), | ||
Prandtl=prandtl_number()) | ||
|
||
# This convergence test setup was originally derived by Andrew Winters (@andrewwinters5000) | ||
# (Simplified version of the 2D) | ||
function initial_condition_navier_stokes_convergence_test(x, t, equations) | ||
# Amplitude and shift | ||
A = 0.5 | ||
c = 2.0 | ||
|
||
# convenience values for trig. functions | ||
pi_x = pi * x[1] | ||
pi_t = pi * t | ||
|
||
rho = c + A * sin(pi_x) * cos(pi_t) | ||
v1 = sin(pi_x) * cos(pi_t) | ||
p = rho^2 | ||
|
||
return prim2cons(SVector(rho, v1, p), equations) | ||
end | ||
initial_condition = initial_condition_navier_stokes_convergence_test | ||
|
||
@inline function source_terms_navier_stokes_convergence_test(u, x, t, equations) | ||
# we currently need to hardcode these parameters until we fix the "combined equation" issue | ||
# see also https://github.com/trixi-framework/Trixi.jl/pull/1160 | ||
inv_gamma_minus_one = inv(equations.gamma - 1) | ||
Pr = prandtl_number() | ||
mu_ = mu() | ||
|
||
# Same settings as in `initial_condition` | ||
# Amplitude and shift | ||
A = 0.5 | ||
c = 2.0 | ||
|
||
# convenience values for trig. functions | ||
pi_x = pi * x[1] | ||
pi_t = pi * t | ||
|
||
# compute the manufactured solution and all necessary derivatives | ||
rho = c + A * sin(pi_x) * cos(pi_t) | ||
rho_t = -pi * A * sin(pi_x) * sin(pi_t) | ||
rho_x = pi * A * cos(pi_x) * cos(pi_t) | ||
rho_xx = -pi * pi * A * sin(pi_x) * cos(pi_t) | ||
|
||
v1 = sin(pi_x) * cos(pi_t) | ||
v1_t = -pi * sin(pi_x) * sin(pi_t) | ||
v1_x = pi * cos(pi_x) * cos(pi_t) | ||
v1_xx = -pi * pi * sin(pi_x) * cos(pi_t) | ||
|
||
p = rho * rho | ||
p_t = 2.0 * rho * rho_t | ||
p_x = 2.0 * rho * rho_x | ||
p_xx = 2.0 * rho * rho_xx + 2.0 * rho_x * rho_x | ||
|
||
E = p * inv_gamma_minus_one + 0.5 * rho * v1^2 | ||
E_t = p_t * inv_gamma_minus_one + 0.5 * rho_t * v1^2 + rho * v1 * v1_t | ||
E_x = p_x * inv_gamma_minus_one + 0.5 * rho_x * v1^2 + rho * v1 * v1_x | ||
|
||
# Some convenience constants | ||
T_const = equations.gamma * inv_gamma_minus_one / Pr | ||
inv_rho_cubed = 1.0 / (rho^3) | ||
|
||
# compute the source terms | ||
# density equation | ||
du1 = rho_t + rho_x * v1 + rho * v1_x | ||
|
||
# x-momentum equation | ||
du2 = ( rho_t * v1 + rho * v1_t | ||
+ p_x + rho_x * v1^2 + 2.0 * rho * v1 * v1_x | ||
# stress tensor from x-direction | ||
- v1_xx * mu_) | ||
|
||
# total energy equation | ||
du3 = ( E_t + v1_x * (E + p) + v1 * (E_x + p_x) | ||
# stress tensor and temperature gradient terms from x-direction | ||
- v1_xx * v1 * mu_ | ||
- v1_x * v1_x * mu_ | ||
- T_const * inv_rho_cubed * ( p_xx * rho * rho | ||
- 2.0 * p_x * rho * rho_x | ||
+ 2.0 * p * rho_x * rho_x | ||
- p * rho * rho_xx ) * mu_) | ||
|
||
return SVector(du1, du2, du3) | ||
end | ||
|
||
volume_flux = flux_ranocha | ||
solver = DGSEM(polydeg=3, surface_flux=flux_hllc, | ||
volume_integral=VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
coordinates_min = -1.0 | ||
coordinates_max = 1.0 | ||
mesh = TreeMesh(coordinates_min, coordinates_max, | ||
initial_refinement_level=4, | ||
n_cells_max=100_000) | ||
|
||
|
||
semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic), | ||
initial_condition, solver, | ||
source_terms = source_terms_navier_stokes_convergence_test) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 10.0) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 1000 | ||
analysis_callback = AnalysisCallback(semi, interval=analysis_interval) | ||
|
||
alive_callback = AliveCallback(analysis_interval=analysis_interval,) | ||
|
||
callbacks = CallbackSet(summary_callback, | ||
analysis_callback, | ||
alive_callback) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
time_int_tol = 1e-9 | ||
sol = solve(ode, RDPK3SpFSAL49(); abstol=time_int_tol, reltol=time_int_tol, | ||
ode_default_options()..., callback=callbacks) | ||
summary_callback() # print the timer summary |
160 changes: 160 additions & 0 deletions
160
examples/tree_1d_dgsem/elixir_navierstokes_convergence_walls.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
using OrdinaryDiffEq | ||
using Trixi | ||
|
||
############################################################################### | ||
# semidiscretization of the ideal compressible Navier-Stokes equations | ||
|
||
prandtl_number() = 0.72 | ||
mu() = 0.01 | ||
|
||
equations = CompressibleEulerEquations1D(1.4) | ||
equations_parabolic = CompressibleNavierStokesDiffusion1D(equations, mu=mu(), Prandtl=prandtl_number(), | ||
gradient_variables=GradientVariablesPrimitive()) | ||
|
||
# Create DG solver with polynomial degree = 3 and (local) Lax-Friedrichs/Rusanov flux as surface flux | ||
solver = DGSEM(polydeg=3, surface_flux=flux_lax_friedrichs, | ||
volume_integral=VolumeIntegralWeakForm()) | ||
|
||
coordinates_min = -1.0 | ||
coordinates_max = 1.0 | ||
|
||
# Create a uniformly refined mesh with periodic boundaries | ||
mesh = TreeMesh(coordinates_min, coordinates_max, | ||
initial_refinement_level=3, | ||
periodicity=false, | ||
n_cells_max=30_000) # set maximum capacity of tree data structure | ||
|
||
# Note: the initial condition cannot be specialized to `CompressibleNavierStokesDiffusion1D` | ||
# since it is called by both the parabolic solver (which passes in `CompressibleNavierStokesDiffusion1D`) | ||
# and by the initial condition (which passes in `CompressibleEulerEquations1D`). | ||
# This convergence test setup was originally derived by Andrew Winters (@andrewwinters5000) | ||
function initial_condition_navier_stokes_convergence_test(x, t, equations) | ||
# Amplitude and shift | ||
A = 0.5 | ||
c = 2.0 | ||
|
||
# convenience values for trig. functions | ||
pi_x = pi * x[1] | ||
pi_t = pi * t | ||
|
||
rho = c + A * cos(pi_x) * cos(pi_t) | ||
v1 = log(x[1] + 2.0) * (1.0 - exp(-A * (x[1] - 1.0)) ) * cos(pi_t) | ||
p = rho^2 | ||
|
||
return prim2cons(SVector(rho, v1, p), equations) | ||
end | ||
|
||
@inline function source_terms_navier_stokes_convergence_test(u, x, t, equations) | ||
x = x[1] | ||
|
||
# TODO: parabolic | ||
# we currently need to hardcode these parameters until we fix the "combined equation" issue | ||
# see also https://github.com/trixi-framework/Trixi.jl/pull/1160 | ||
inv_gamma_minus_one = inv(equations.gamma - 1) | ||
Pr = prandtl_number() | ||
mu_ = mu() | ||
|
||
# Same settings as in `initial_condition` | ||
# Amplitude and shift | ||
A = 0.5 | ||
c = 2.0 | ||
|
||
# convenience values for trig. functions | ||
pi_x = pi * x | ||
pi_t = pi * t | ||
|
||
# compute the manufactured solution and all necessary derivatives | ||
rho = c + A * cos(pi_x) * cos(pi_t) | ||
rho_t = -pi * A * cos(pi_x) * sin(pi_t) | ||
rho_x = -pi * A * sin(pi_x) * cos(pi_t) | ||
rho_xx = -pi * pi * A * cos(pi_x) * cos(pi_t) | ||
|
||
v1 = log(x + 2.0) * (1.0 - exp(-A * (x - 1.0))) * cos(pi_t) | ||
v1_t = -pi * log(x + 2.0) * (1.0 - exp(-A * (x - 1.0))) * sin(pi_t) | ||
v1_x = (A * log(x + 2.0) * exp(-A * (x - 1.0)) + (1.0 - exp(-A * (x - 1.0))) / (x + 2.0)) * cos(pi_t) | ||
v1_xx = (( 2.0 * A * exp(-A * (x - 1.0)) / (x + 2.0) | ||
- A * A * log(x + 2.0) * exp(-A * (x - 1.0)) | ||
- (1.0 - exp(-A * (x - 1.0))) / ((x + 2.0) * (x + 2.0))) * cos(pi_t)) | ||
|
||
p = rho * rho | ||
p_t = 2.0 * rho * rho_t | ||
p_x = 2.0 * rho * rho_x | ||
p_xx = 2.0 * rho * rho_xx + 2.0 * rho_x * rho_x | ||
|
||
# Note this simplifies slightly because the ansatz assumes that v1 = v2 | ||
E = p * inv_gamma_minus_one + 0.5 * rho * v1^2 | ||
E_t = p_t * inv_gamma_minus_one + 0.5 * rho_t * v1^2 + rho * v1 * v1_t | ||
E_x = p_x * inv_gamma_minus_one + 0.5 * rho_x * v1^2 + rho * v1 * v1_x | ||
|
||
# Some convenience constants | ||
T_const = equations.gamma * inv_gamma_minus_one / Pr | ||
inv_rho_cubed = 1.0 / (rho^3) | ||
|
||
# compute the source terms | ||
# density equation | ||
du1 = rho_t + rho_x * v1 + rho * v1_x | ||
|
||
# y-momentum equation | ||
du2 = ( rho_t * v1 + rho * v1_t | ||
+ p_x + rho_x * v1^2 + 2.0 * rho * v1 * v1_x | ||
# stress tensor from y-direction | ||
- v1_xx * mu_) | ||
|
||
# total energy equation | ||
du3 = ( E_t + v1_x * (E + p) + v1 * (E_x + p_x) | ||
# stress tensor and temperature gradient terms from x-direction | ||
- v1_xx * v1 * mu_ | ||
- v1_x * v1_x * mu_ | ||
- T_const * inv_rho_cubed * ( p_xx * rho * rho | ||
- 2.0 * p_x * rho * rho_x | ||
+ 2.0 * p * rho_x * rho_x | ||
- p * rho * rho_xx ) * mu_ ) | ||
|
||
return SVector(du1, du2, du3) | ||
end | ||
|
||
initial_condition = initial_condition_navier_stokes_convergence_test | ||
|
||
# BC types | ||
velocity_bc_left_right = NoSlip((x, t, equations) -> initial_condition_navier_stokes_convergence_test(x, t, equations)[2]) | ||
|
||
heat_bc_left = Isothermal((x, t, equations) -> | ||
Trixi.temperature(initial_condition_navier_stokes_convergence_test(x, t, equations), | ||
equations_parabolic)) | ||
heat_bc_right = Adiabatic((x, t, equations) -> 0.0) | ||
|
||
boundary_condition_left = BoundaryConditionNavierStokesWall(velocity_bc_left_right, heat_bc_left) | ||
boundary_condition_right = BoundaryConditionNavierStokesWall(velocity_bc_left_right, heat_bc_right) | ||
|
||
# define inviscid boundary conditions | ||
boundary_conditions = (; x_neg = boundary_condition_slip_wall, | ||
x_pos = boundary_condition_slip_wall) | ||
|
||
# define viscous boundary conditions | ||
boundary_conditions_parabolic = (; x_neg = boundary_condition_left, | ||
x_pos = boundary_condition_right) | ||
|
||
semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic), initial_condition, solver; | ||
boundary_conditions=(boundary_conditions, boundary_conditions_parabolic), | ||
source_terms=source_terms_navier_stokes_convergence_test) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
# Create ODE problem with time span `tspan` | ||
tspan = (0.0, 1.0) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
alive_callback = AliveCallback(alive_interval=10) | ||
analysis_interval = 100 | ||
analysis_callback = AnalysisCallback(semi, interval=analysis_interval) | ||
callbacks = CallbackSet(summary_callback, alive_callback, analysis_callback) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
time_int_tol = 1e-8 | ||
sol = solve(ode, RDPK3SpFSAL49(); abstol=time_int_tol, reltol=time_int_tol, dt = 1e-5, | ||
ode_default_options()..., callback=callbacks) | ||
summary_callback() # print the timer summary |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.