Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add numerical support of other real types (compressible_euler) #1947

Merged
merged 21 commits into from
Jun 14, 2024
Merged
Show file tree
Hide file tree
Changes from 10 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
133 changes: 68 additions & 65 deletions src/equations/compressible_euler_multicomponent_1d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -123,14 +123,15 @@ A smooth initial condition used for convergence tests in combination with
"""
function initial_condition_convergence_test(x, t,
equations::CompressibleEulerMulticomponentEquations1D)
RealT = eltype(x)
c = 2
A = 0.1
A = convert(RealT, 0.1)
L = 2
f = 1 / L
omega = 2 * pi * f
f = 1.0f0 / L
omega = 2 * convert(RealT, pi) * f
ini = c + A * sin(omega * (x[1] - t))

v1 = 1.0
v1 = 1

rho = ini

Expand Down Expand Up @@ -159,20 +160,21 @@ Source terms used for convergence tests in combination with
@inline function source_terms_convergence_test(u, x, t,
equations::CompressibleEulerMulticomponentEquations1D)
# Same settings as in `initial_condition`
RealT = eltype(u)
c = 2
A = 0.1
A = convert(RealT, 0.1)
L = 2
f = 1 / L
omega = 2 * pi * f
f = 1.0f0 / L
omega = 2 * convert(RealT, pi) * f

gamma = totalgamma(u, equations)

x1, = x
si, co = sincos((t - x1) * omega)
tmp = (-((4 * si * A - 4c) + 1) * (gamma - 1) * co * A * omega) / 2
tmp = (-((4 * si * A - 4 * c) + 1) * (gamma - 1) * co * A * omega) / 2
huiyuxie marked this conversation as resolved.
Show resolved Hide resolved

# Here we compute an arbitrary number of different rhos. (one rho is double the next rho while the sum of all rhos is 1
du_rho = SVector{ncomponents(equations), real(equations)}(0.0
du_rho = SVector{ncomponents(equations), real(equations)}(0
for i in eachcomponent(equations))

du1 = tmp
Expand All @@ -194,24 +196,25 @@ A for multicomponent adapted weak blast wave adapted to multicomponent and taken
function initial_condition_weak_blast_wave(x, t,
equations::CompressibleEulerMulticomponentEquations1D)
# From Hennemann & Gassner JCP paper 2020 (Sec. 6.3)
inicenter = SVector(0.0)
RealT = eltype(x)
inicenter = SVector(0)
x_norm = x[1] - inicenter[1]
r = abs(x_norm)
cos_phi = x_norm > 0 ? one(x_norm) : -one(x_norm)
cos_phi = x_norm > 0 ? 1 : -1

prim_rho = SVector{ncomponents(equations), real(equations)}(r > 0.5 ?
prim_rho = SVector{ncomponents(equations), real(equations)}(r > 0.5f0 ?
2^(i - 1) * (1 - 2) /
(1 -
2^ncomponents(equations)) *
1.0 :
1 :
2^(i - 1) * (1 - 2) /
(1 -
2^ncomponents(equations)) *
1.1691
convert(RealT, 1.1691)
for i in eachcomponent(equations))

v1 = r > 0.5 ? 0.0 : 0.1882 * cos_phi
p = r > 0.5 ? 1.0 : 1.245
v1 = r > 0.5f0 ? zero(RealT) : convert(RealT, 0.1882) * cos_phi
p = r > 0.5f0 ? one(RealT) : convert(RealT, 1.245)

prim_other = SVector{2, real(equations)}(v1, p)

Expand All @@ -227,7 +230,7 @@ end

v1 = rho_v1 / rho
gamma = totalgamma(u, equations)
p = (gamma - 1) * (rho_e - 0.5 * rho * v1^2)
p = (gamma - 1) * (rho_e - 0.5f0 * rho * v1^2)

f_rho = densities(u, v1, equations)
f1 = rho_v1 * v1 + p
Expand Down Expand Up @@ -255,7 +258,7 @@ Entropy conserving two-point flux by
rhok_mean = SVector{ncomponents(equations), real(equations)}(ln_mean(u_ll[i + 2],
u_rr[i + 2])
for i in eachcomponent(equations))
rhok_avg = SVector{ncomponents(equations), real(equations)}(0.5 * (u_ll[i + 2] +
rhok_avg = SVector{ncomponents(equations), real(equations)}(0.5f0 * (u_ll[i + 2] +
u_rr[i + 2])
for i in eachcomponent(equations))

Expand All @@ -269,28 +272,28 @@ Entropy conserving two-point flux by
# extract velocities
v1_ll = rho_v1_ll / rho_ll
v1_rr = rho_v1_rr / rho_rr
v1_avg = 0.5 * (v1_ll + v1_rr)
v1_square = 0.5 * (v1_ll^2 + v1_rr^2)
v1_avg = 0.5f0 * (v1_ll + v1_rr)
v1_square = 0.5f0 * (v1_ll^2 + v1_rr^2)
v_sum = v1_avg

enth = zero(v_sum)
help1_ll = zero(v1_ll)
help1_rr = zero(v1_rr)
enth = 0
help1_ll = 0
help1_rr = 0

for i in eachcomponent(equations)
enth += rhok_avg[i] * gas_constants[i]
help1_ll += u_ll[i + 2] * cv[i]
help1_rr += u_rr[i + 2] * cv[i]
end

T_ll = (rho_e_ll - 0.5 * rho_ll * (v1_ll^2)) / help1_ll
T_rr = (rho_e_rr - 0.5 * rho_rr * (v1_rr^2)) / help1_rr
T = 0.5 * (1.0 / T_ll + 1.0 / T_rr)
T_log = ln_mean(1.0 / T_ll, 1.0 / T_rr)
T_ll = (rho_e_ll - 0.5f0 * rho_ll * (v1_ll^2)) / help1_ll
T_rr = (rho_e_rr - 0.5f0 * rho_rr * (v1_rr^2)) / help1_rr
T = 0.5f0 * (1 / T_ll + 1 / T_rr)
T_log = ln_mean(1 / T_ll, 1 / T_rr)

# Calculate fluxes depending on orientation
help1 = zero(T_ll)
help2 = zero(T_rr)
help1 = 0
help2 = 0

f_rho = SVector{ncomponents(equations), real(equations)}(rhok_mean[i] * v1_avg
for i in eachcomponent(equations))
Expand All @@ -299,7 +302,7 @@ Entropy conserving two-point flux by
help2 += f_rho[i]
end
f1 = (help2) * v1_avg + enth / T
f2 = (help1) / T_log - 0.5 * (v1_square) * (help2) + v1_avg * f1
f2 = (help1) / T_log - 0.5f0 * (v1_square) * (help2) + v1_avg * f1

f_other = SVector{2, real(equations)}(f1, f2)

Expand Down Expand Up @@ -330,7 +333,7 @@ See also
rhok_mean = SVector{ncomponents(equations), real(equations)}(ln_mean(u_ll[i + 2],
u_rr[i + 2])
for i in eachcomponent(equations))
rhok_avg = SVector{ncomponents(equations), real(equations)}(0.5 * (u_ll[i + 2] +
rhok_avg = SVector{ncomponents(equations), real(equations)}(0.5f0 * (u_ll[i + 2] +
u_rr[i + 2])
for i in eachcomponent(equations))

Expand All @@ -339,25 +342,25 @@ See also
rho_rr = density(u_rr, equations)

# Calculating gamma
gamma = totalgamma(0.5 * (u_ll + u_rr), equations)
gamma = totalgamma(0.5f0 * (u_ll + u_rr), equations)
inv_gamma_minus_one = 1 / (gamma - 1)

# extract velocities
v1_ll = rho_v1_ll / rho_ll
v1_rr = rho_v1_rr / rho_rr
v1_avg = 0.5 * (v1_ll + v1_rr)
velocity_square_avg = 0.5 * (v1_ll * v1_rr)
v1_avg = 0.5f0 * (v1_ll + v1_rr)
velocity_square_avg = 0.5f0 * (v1_ll * v1_rr)

# density flux
f_rho = SVector{ncomponents(equations), real(equations)}(rhok_mean[i] * v1_avg
for i in eachcomponent(equations))

# helpful variables
f_rho_sum = zero(v1_ll)
help1_ll = zero(v1_ll)
help1_rr = zero(v1_rr)
enth_ll = zero(v1_ll)
enth_rr = zero(v1_rr)
f_rho_sum = 0
help1_ll = 0
help1_rr = 0
enth_ll = 0
enth_rr = 0
for i in eachcomponent(equations)
enth_ll += u_ll[i + 2] * gas_constants[i]
enth_rr += u_rr[i + 2] * gas_constants[i]
Expand All @@ -367,17 +370,17 @@ See also
end

# temperature and pressure
T_ll = (rho_e_ll - 0.5 * rho_ll * (v1_ll^2)) / help1_ll
T_rr = (rho_e_rr - 0.5 * rho_rr * (v1_rr^2)) / help1_rr
T_ll = (rho_e_ll - 0.5f0 * rho_ll * (v1_ll^2)) / help1_ll
T_rr = (rho_e_rr - 0.5f0 * rho_rr * (v1_rr^2)) / help1_rr
p_ll = T_ll * enth_ll
p_rr = T_rr * enth_rr
p_avg = 0.5 * (p_ll + p_rr)
p_avg = 0.5f0 * (p_ll + p_rr)
inv_rho_p_mean = p_ll * p_rr * inv_ln_mean(rho_ll * p_rr, rho_rr * p_ll)

# momentum and energy flux
f1 = f_rho_sum * v1_avg + p_avg
f2 = f_rho_sum * (velocity_square_avg + inv_rho_p_mean * inv_gamma_minus_one) +
0.5 * (p_ll * v1_rr + p_rr * v1_ll)
0.5f0 * (p_ll * v1_rr + p_rr * v1_ll)
f_other = SVector{2, real(equations)}(f1, f2)

return vcat(f_other, f_rho)
Expand All @@ -398,8 +401,8 @@ end
v_ll = rho_v1_ll / rho_ll
v_rr = rho_v1_rr / rho_rr

p_ll = (gamma_ll - 1) * (rho_e_ll - 1 / 2 * rho_ll * v_ll^2)
p_rr = (gamma_rr - 1) * (rho_e_rr - 1 / 2 * rho_rr * v_rr^2)
p_ll = (gamma_ll - 1) * (rho_e_ll - 0.5f0 * rho_ll * v_ll^2)
p_rr = (gamma_rr - 1) * (rho_e_rr - 0.5f0 * rho_rr * v_rr^2)
c_ll = sqrt(gamma_ll * p_ll / rho_ll)
c_rr = sqrt(gamma_rr * p_rr / rho_rr)

Expand All @@ -414,7 +417,7 @@ end
v1 = rho_v1 / rho

gamma = totalgamma(u, equations)
p = (gamma - 1) * (rho_e - 1 / 2 * rho * (v1^2))
p = (gamma - 1) * (rho_e - 0.5f0 * rho * (v1^2))
c = sqrt(gamma * p / rho)

return (abs(v1) + c,)
Expand All @@ -431,7 +434,7 @@ end
v1 = rho_v1 / rho
gamma = totalgamma(u, equations)

p = (gamma - 1) * (rho_e - 0.5 * rho * (v1^2))
p = (gamma - 1) * (rho_e - 0.5f0 * rho * (v1^2))
prim_other = SVector{2, real(equations)}(v1, p)

return vcat(prim_other, prim_rho)
Expand All @@ -451,7 +454,7 @@ end

rho_v1 = rho * v1

rho_e = p / (gamma - 1) + 0.5 * (rho_v1 * v1)
rho_e = p / (gamma - 1) + 0.5f0 * (rho_v1 * v1)

cons_other = SVector{2, RealT}(rho_v1, rho_e)

Expand All @@ -466,8 +469,8 @@ end

rho = density(u, equations)

help1 = zero(rho)
gas_constant = zero(rho)
help1 = 0
gas_constant = 0
for i in eachcomponent(equations)
help1 += u[i + 2] * cv[i]
gas_constant += gas_constants[i] * (u[i + 2] / rho)
Expand All @@ -477,10 +480,10 @@ end
v_square = v1^2
gamma = totalgamma(u, equations)

p = (gamma - 1) * (rho_e - 0.5 * rho * v_square)
p = (gamma - 1) * (rho_e - 0.5f0 * rho * v_square)
s = log(p) - gamma * log(rho) - log(gas_constant)
rho_p = rho / p
T = (rho_e - 0.5 * rho * v_square) / (help1)
T = (rho_e - 0.5f0 * rho * v_square) / (help1)

entrop_rho = SVector{ncomponents(equations), real(equations)}((cv[i] *
(1 - log(T)) +
Expand All @@ -507,14 +510,14 @@ end
(-cv[i] *
log(-w[2]) -
cp[i] + w[i + 2] -
0.5 * w[1]^2 /
0.5f0 * w[1]^2 /
w[2]))
for i in eachcomponent(equations))

rho = zero(cons_rho[1])
help1 = zero(cons_rho[1])
help2 = zero(cons_rho[1])
p = zero(cons_rho[1])
rho = 0
help1 = 0
help2 = 0
p = 0
for i in eachcomponent(equations)
rho += cons_rho[i]
help1 += cons_rho[i] * cv[i] * gammas[i]
Expand All @@ -523,7 +526,7 @@ end
end
u1 = rho * v1
gamma = help1 / help2
u2 = p / (gamma - 1) + 0.5 * rho * v1^2
u2 = p / (gamma - 1) + 0.5f0 * rho * v1^2
cons_other = SVector{2, real(equations)}(u1, u2)
return vcat(cons_other, cons_rho)
end
Expand All @@ -534,7 +537,7 @@ end
rho = density(u, equations)
T = temperature(u, equations)

total_entropy = zero(u[1])
total_entropy = 0
for i in eachcomponent(equations)
total_entropy -= u[i + 2] * (cv[i] * log(T) - gas_constants[i] * log(u[i + 2]))
end
Expand All @@ -548,15 +551,15 @@ end
rho_v1, rho_e = u

rho = density(u, equations)
help1 = zero(rho)
help1 = 0

for i in eachcomponent(equations)
help1 += u[i + 2] * cv[i]
end

v1 = rho_v1 / rho
v_square = v1^2
T = (rho_e - 0.5 * rho * v_square) / help1
T = (rho_e - 0.5f0 * rho * v_square) / help1

return T
end
Expand All @@ -570,8 +573,8 @@ partial density fractions as well as the partial specific heats at constant volu
@inline function totalgamma(u, equations::CompressibleEulerMulticomponentEquations1D)
@unpack cv, gammas = equations

help1 = zero(u[1])
help2 = zero(u[1])
help1 = 0
help2 = 0

for i in eachcomponent(equations)
help1 += u[i + 2] * cv[i] * gammas[i]
Expand All @@ -587,13 +590,13 @@ end
rho = density(u, equations)
gamma = totalgamma(u, equations)

p = (gamma - 1) * (rho_e - 0.5 * (rho_v1^2) / rho)
p = (gamma - 1) * (rho_e - 0.5f0 * (rho_v1^2) / rho)

return p
end

@inline function density(u, equations::CompressibleEulerMulticomponentEquations1D)
rho = zero(u[1])
rho = 0

for i in eachcomponent(equations)
rho += u[i + 2]
Expand Down
Loading
Loading