Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add numerical support of other real types (navier) #1968

Merged
merged 19 commits into from
Jun 25, 2024
Merged
Show file tree
Hide file tree
Changes from 12 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions src/equations/compressible_navier_stokes_1d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -171,7 +171,7 @@ function flux(u, gradients, orientation::Integer,
mu = dynamic_viscosity(u, equations)

# viscous flux components in the x-direction
f1 = zero(rho)
f1 = 0
f2 = tau_11 * mu
f3 = (v1 * tau_11 + q1) * mu

Expand Down Expand Up @@ -252,7 +252,7 @@ end
@inline function temperature(u, equations::CompressibleNavierStokesDiffusion1D)
rho, rho_v1, rho_e = u

p = (equations.gamma - 1) * (rho_e - 0.5 * rho_v1^2 / rho)
p = (equations.gamma - 1) * (rho_e - 0.5f0 * rho_v1^2 / rho)
T = p / rho
return T
end
Expand Down
14 changes: 7 additions & 7 deletions src/equations/compressible_navier_stokes_2d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -157,13 +157,13 @@ function flux(u, gradients, orientation::Integer,

# Components of viscous stress tensor

# (4/3 * (v1)_x - 2/3 * (v2)_y)
tau_11 = 4.0 / 3.0 * dv1dx - 2.0 / 3.0 * dv2dy
# (4 * (v1)_x / 3 - 2 * (v2)_y / 3)
tau_11 = 4 * dv1dx / 3 - 2 * dv2dy / 3
# ((v1)_y + (v2)_x)
# stress tensor is symmetric
tau_12 = dv1dy + dv2dx # = tau_21
# (4/3 * (v2)_y - 2/3 * (v1)_x)
tau_22 = 4.0 / 3.0 * dv2dy - 2.0 / 3.0 * dv1dx
tau_22 = 4 * dv2dy / 3 - 2 * dv1dx / 3

# Fick's law q = -kappa * grad(T) = -kappa * grad(p / (R rho))
# with thermal diffusivity constant kappa = gamma μ R / ((gamma-1) Pr)
Expand All @@ -181,7 +181,7 @@ function flux(u, gradients, orientation::Integer,

if orientation == 1
# viscous flux components in the x-direction
f1 = zero(rho)
f1 = 0
f2 = tau_11 * mu
f3 = tau_12 * mu
f4 = (v1 * tau_11 + v2 * tau_12 + q1) * mu
Expand All @@ -190,7 +190,7 @@ function flux(u, gradients, orientation::Integer,
else # if orientation == 2
# viscous flux components in the y-direction
# Note, symmetry is exploited for tau_12 = tau_21
g1 = zero(rho)
g1 = 0
g2 = tau_12 * mu # tau_21 * mu
g3 = tau_22 * mu
g4 = (v1 * tau_12 + v2 * tau_22 + q2) * mu
Expand Down Expand Up @@ -276,7 +276,7 @@ end
@inline function temperature(u, equations::CompressibleNavierStokesDiffusion2D)
rho, rho_v1, rho_v2, rho_e = u

p = (equations.gamma - 1) * (rho_e - 0.5 * (rho_v1^2 + rho_v2^2) / rho)
p = (equations.gamma - 1) * (rho_e - 0.5f0 * (rho_v1^2 + rho_v2^2) / rho)
T = p / rho
return T
end
Expand All @@ -285,7 +285,7 @@ end
# Enstrophy is 0.5 rho ω⋅ω where ω = ∇ × v

omega = vorticity(u, gradients, equations)
return 0.5 * u[1] * omega^2
return 0.5f0 * u[1] * omega^2
end

@inline function vorticity(u, gradients, equations::CompressibleNavierStokesDiffusion2D)
Expand Down
22 changes: 11 additions & 11 deletions src/equations/compressible_navier_stokes_3d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -162,12 +162,12 @@ function flux(u, gradients, orientation::Integer,
# Components of viscous stress tensor

# Diagonal parts
# (4/3 * (v1)_x - 2/3 * ((v2)_y + (v3)_z)
tau_11 = 4.0 / 3.0 * dv1dx - 2.0 / 3.0 * (dv2dy + dv3dz)
# (4/3 * (v2)_y - 2/3 * ((v1)_x + (v3)_z)
tau_22 = 4.0 / 3.0 * dv2dy - 2.0 / 3.0 * (dv1dx + dv3dz)
# (4/3 * (v3)_z - 2/3 * ((v1)_x + (v2)_y)
tau_33 = 4.0 / 3.0 * dv3dz - 2.0 / 3.0 * (dv1dx + dv2dy)
# (4 * (v1)_x / 3 - 2 * ((v2)_y + (v3)_z)) / 3)
tau_11 = 4 * dv1dx / 3 - 2 * (dv2dy + dv3dz) / 3
# (4 * (v2)_y / 3 - 2 * ((v1)_x + (v3)_z) / 3)
tau_22 = 4 * dv2dy / 3 - 2 * (dv1dx + dv3dz) / 3
# (4 * (v3)_z / 3 - 2 * ((v1)_x + (v2)_y) / 3)
tau_33 = 4 * dv3dz / 3 - 2 * (dv1dx + dv2dy) / 3

# Off diagonal parts, exploit that stress tensor is symmetric
# ((v1)_y + (v2)_x)
Expand All @@ -194,7 +194,7 @@ function flux(u, gradients, orientation::Integer,

if orientation == 1
# viscous flux components in the x-direction
f1 = zero(rho)
f1 = 0
f2 = tau_11 * mu
f3 = tau_12 * mu
f4 = tau_13 * mu
Expand All @@ -204,7 +204,7 @@ function flux(u, gradients, orientation::Integer,
elseif orientation == 2
# viscous flux components in the y-direction
# Note, symmetry is exploited for tau_12 = tau_21
g1 = zero(rho)
g1 = 0
g2 = tau_12 * mu # tau_21 * mu
g3 = tau_22 * mu
g4 = tau_23 * mu
Expand All @@ -214,7 +214,7 @@ function flux(u, gradients, orientation::Integer,
else # if orientation == 3
# viscous flux components in the z-direction
# Note, symmetry is exploited for tau_13 = tau_31, tau_23 = tau_32
h1 = zero(rho)
h1 = 0
h2 = tau_13 * mu # tau_31 * mu
h3 = tau_23 * mu # tau_32 * mu
h4 = tau_33 * mu
Expand Down Expand Up @@ -304,7 +304,7 @@ end
@inline function temperature(u, equations::CompressibleNavierStokesDiffusion3D)
rho, rho_v1, rho_v2, rho_v3, rho_e = u

p = (equations.gamma - 1) * (rho_e - 0.5 * (rho_v1^2 + rho_v2^2 + rho_v3^2) / rho)
p = (equations.gamma - 1) * (rho_e - 0.5f0 * (rho_v1^2 + rho_v2^2 + rho_v3^2) / rho)
T = p / rho
return T
end
Expand All @@ -313,7 +313,7 @@ end
# Enstrophy is 0.5 rho ω⋅ω where ω = ∇ × v

omega = vorticity(u, gradients, equations)
return 0.5 * u[1] * (omega[1]^2 + omega[2]^2 + omega[3]^2)
return 0.5f0 * u[1] * (omega[1]^2 + omega[2]^2 + omega[3]^2)
end

@inline function vorticity(u, gradients, equations::CompressibleNavierStokesDiffusion3D)
Expand Down
71 changes: 70 additions & 1 deletion test/test_type.jl
Original file line number Diff line number Diff line change
Expand Up @@ -109,7 +109,7 @@ isdir(outdir) && rm(outdir, recursive = true)

x = SVector(zero(RealT))
t = zero(RealT)
u = u_ll = u_rr = u_inner = SVector(one(RealT), one(RealT), one(RealT))
u = u_ll = u_rr = u_inner = SVector(one(RealT), zero(RealT), zero(RealT))
huiyuxie marked this conversation as resolved.
Show resolved Hide resolved
orientation = 1
directions = [1, 2]
cons = SVector(one(RealT), one(RealT), one(RealT))
Expand Down Expand Up @@ -686,6 +686,75 @@ isdir(outdir) && rm(outdir, recursive = true)
end
end

@timed_testset "Compressible Navier Stokes Diffusion 1D" begin
for RealT in (Float32, Float64)
equations = @inferred CompressibleEulerEquations1D(RealT(1.4))
prandtl_number() = RealT(0.72)
mu() = RealT(0.01)
equations_parabolic_primitive = @inferred CompressibleNavierStokesDiffusion1D(equations,
mu = mu(),
Prandtl = prandtl_number(),
gradient_variables = GradientVariablesPrimitive())
equations_parabolic_entropy = @inferred CompressibleNavierStokesDiffusion1D(equations,
mu = mu(),
Prandtl = prandtl_number(),
gradient_variables = GradientVariablesEntropy())
huiyuxie marked this conversation as resolved.
Show resolved Hide resolved

x = SVector(zero(RealT))
t = zero(RealT)
u = u_inner = u_transformed = flux_inner = SVector(one(RealT), zero(RealT),
zero(RealT))
orientation = 1
directions = [1, 2]
gradients = SVector(RealT(0.1), RealT(0.1), RealT(0.1), RealT(0.1))

for equations_parabolic in (equations_parabolic_primitive,
equations_parabolic_entropy)
@test eltype(@inferred flux(u, gradients, orientation, equations_parabolic)) ==
RealT

@test eltype(@inferred cons2prim(u, equations_parabolic)) == RealT
@test eltype(@inferred prim2cons(u, equations_parabolic)) == RealT
@test eltype(@inferred cons2entropy(u, equations_parabolic)) == RealT
@test eltype(@inferred entropy2cons(u, equations_parabolic)) == RealT
@test typeof(@inferred Trixi.temperature(u, equations_parabolic)) == RealT

@test eltype(@inferred Trixi.convert_transformed_to_primitive(u_transformed,
equations_parabolic)) ==
RealT
@test eltype(@inferred Trixi.convert_derivative_to_primitive(u, gradients,
equations_parabolic)) ==
RealT
end

# test for GradientVariablesPrimitive
huiyuxie marked this conversation as resolved.
Show resolved Hide resolved
velocity_bc_left_right = NoSlip((x, t, equations) -> initial_condition_navier_stokes_convergence_test(x,
t,
equations)[2])
heat_bc_left = Isothermal((x, t, equations) -> Trixi.temperature(initial_condition_navier_stokes_convergence_test(x,
t,
equations),
equations_parabolic))
heat_bc_right = Adiabatic((x, t, equations) -> zero(RealT))
boundary_condition_left = BoundaryConditionNavierStokesWall(velocity_bc_left_right,
heat_bc_left)
boundary_condition_right = BoundaryConditionNavierStokesWall(velocity_bc_left_right,
heat_bc_right)
gradient = Trixi.Gradient()

for direction in directions
@test eltype(@inferred boundary_condition_left(flux_inner, u_inner,
orientation, direction, x, t,
gradient,
equations_parabolic_primitive)) ==
RealT
end

# test for GradientVariablesEntropy
huiyuxie marked this conversation as resolved.
Show resolved Hide resolved

end
end

@timed_testset "Linear Scalar Advection 1D" begin
for RealT in (Float32, Float64)
equations = @inferred LinearScalarAdvectionEquation1D(RealT(1))
Expand Down
Loading