-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
71bba1e
commit 3205c8f
Showing
12 changed files
with
1,739 additions
and
3 deletions.
There are no files selected for viewing
61 changes: 61 additions & 0 deletions
61
examples/tree_2d_dgsem/elixir_shallowwater_multilayer_convergence.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
using TrixiShallowWater | ||
|
||
############################################################################### | ||
# Semidiscretization of the multilayer shallow water equations with three layers | ||
|
||
equations = ShallowWaterMultiLayerEquations2D(gravity_constant = 10.0, | ||
rhos = (0.9, 1.0, 1.1)) | ||
|
||
initial_condition = initial_condition_convergence_test | ||
|
||
############################################################################### | ||
# Get the DG approximation space | ||
|
||
volume_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal) | ||
solver = DGSEM(polydeg = 3, | ||
surface_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal), | ||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
############################################################################### | ||
# Get the TreeMesh and setup a periodic mesh | ||
|
||
coordinates_min = (0.0, 0.0) | ||
coordinates_max = (sqrt(2.0), sqrt(2.0)) | ||
mesh = TreeMesh(coordinates_min, coordinates_max, | ||
initial_refinement_level = 4, | ||
n_cells_max = 10_000, | ||
periodicity = true) | ||
|
||
# create the semi discretization object | ||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, | ||
source_terms = source_terms_convergence_test) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 1.0) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 500 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 500, | ||
save_initial_solution = true, | ||
save_final_solution = true) | ||
|
||
callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
# use a Runge-Kutta method with automatic (error based) time step size control | ||
sol = solve(ode, RDPK3SpFSAL49(), abstol = 1.0e-8, reltol = 1.0e-8, | ||
save_everystep = false, callback = callbacks); | ||
summary_callback() # print the timer summary |
92 changes: 92 additions & 0 deletions
92
examples/tree_2d_dgsem/elixir_shallowwater_multilayer_dam_break.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
using TrixiShallowWater | ||
|
||
############################################################################### | ||
# Semidiscretization of the multilayer shallow water equations for a dam break test with a | ||
# discontinuous bottom topography function to test entropy conservation | ||
|
||
equations = ShallowWaterMultiLayerEquations2D(gravity_constant = 1.0, | ||
rhos = (0.9, 0.95, 1.0)) | ||
|
||
# This academic testcase sets up a discontinuous bottom topography | ||
# function and initial condition to test entropy conservation. | ||
|
||
function initial_condition_dam_break(x, t, equations::ShallowWaterMultiLayerEquations2D) | ||
# Bottom topography | ||
b = 0.3 * exp(-0.5 * ((x[1])^2 + (x[2])^2)) | ||
|
||
if x[1] < 0.0 | ||
H = SVector(1.0, 0.8, 0.6) | ||
else | ||
H = SVector(0.9, 0.7, 0.5) | ||
b += 0.1 | ||
end | ||
|
||
v1 = zero(H) | ||
v2 = zero(H) | ||
return prim2cons(SVector(H..., v1..., v2..., b), | ||
equations) | ||
end | ||
|
||
initial_condition = initial_condition_dam_break | ||
|
||
boundary_condition_constant = BoundaryConditionDirichlet(initial_condition_dam_break) | ||
|
||
############################################################################### | ||
# Get the DG approximation space | ||
|
||
volume_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal) | ||
surface_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal) | ||
solver = DGSEM(polydeg = 3, surface_flux = surface_flux, | ||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
############################################################################### | ||
# Get the TreeMesh and setup a periodic mesh | ||
|
||
coordinates_min = (-1.0, -1.0) | ||
coordinates_max = (1.0, 1.0) | ||
mesh = TreeMesh(coordinates_min, coordinates_max, | ||
initial_refinement_level = 4, | ||
n_cells_max = 10_000, | ||
periodicity = true) | ||
|
||
# Create the semi discretization object | ||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver) | ||
############################################################################### | ||
# ODE solver | ||
|
||
tspan = (0.0, 2.0) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
############################################################################### | ||
# Callbacks | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 500 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval, | ||
save_analysis = false, | ||
extra_analysis_integrals = (energy_total, | ||
energy_kinetic, | ||
energy_internal)) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 500, | ||
save_initial_solution = true, | ||
save_final_solution = true) | ||
|
||
stepsize_callback = StepsizeCallback(cfl = 1.0) | ||
|
||
callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution, | ||
stepsize_callback) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false), | ||
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback | ||
save_everystep = false, callback = callbacks); | ||
summary_callback() # print the timer summary |
79 changes: 79 additions & 0 deletions
79
examples/tree_2d_dgsem/elixir_shallowwater_multilayer_well_balanced.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
using TrixiShallowWater | ||
|
||
############################################################################### | ||
# Semidiscretization of the two-layer shallow water equations with a bottom topography function | ||
# to test well-balancedness | ||
|
||
equations = ShallowWaterMultiLayerEquations2D(gravity_constant = 9.81, H0 = 0.6, | ||
rhos = (0.7, 0.8, 0.9, 1.0)) | ||
|
||
# An initial condition with constant total water height, zero velocities and a bottom topography to | ||
# test well-balancedness | ||
function initial_condition_well_balanced(x, t, equations::ShallowWaterMultiLayerEquations2D) | ||
H = SVector(0.6, 0.55, 0.5, 0.45) | ||
v1 = zero(H) | ||
v2 = zero(H) | ||
b = (((x[1] - 0.5)^2 + (x[2] - 0.5)^2) < 0.04 ? | ||
0.2 * (cos(4 * pi * sqrt((x[1] - 0.5)^2 + (x[2] + | ||
-0.5)^2)) + 1) : 0.0) | ||
|
||
return prim2cons(SVector(H..., v1..., v2..., b), | ||
equations) | ||
end | ||
|
||
initial_condition = initial_condition_well_balanced | ||
|
||
############################################################################### | ||
# Get the DG approximation space | ||
|
||
volume_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal) | ||
surface_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal) | ||
solver = DGSEM(polydeg = 3, surface_flux = surface_flux, | ||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
############################################################################### | ||
# Get the TreeMesh and setup a periodic mesh | ||
|
||
coordinates_min = (0.0, 0.0) | ||
coordinates_max = (1.0, 1.0) | ||
mesh = TreeMesh(coordinates_min, coordinates_max, | ||
initial_refinement_level = 3, | ||
n_cells_max = 10_000, | ||
periodicity = true) | ||
|
||
# Create the semi discretization object | ||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver) | ||
|
||
############################################################################### | ||
# ODE solver | ||
|
||
tspan = (0.0, 10.0) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 1000 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval, | ||
extra_analysis_integrals = (lake_at_rest_error,)) | ||
|
||
stepsize_callback = StepsizeCallback(cfl = 1.0) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 1000, | ||
save_initial_solution = true, | ||
save_final_solution = true) | ||
|
||
callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution, | ||
stepsize_callback) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false), | ||
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback | ||
save_everystep = false, callback = callbacks); | ||
summary_callback() # print the timer summary |
62 changes: 62 additions & 0 deletions
62
examples/unstructured_2d_dgsem/elixir_shallowwater_multilayer_convergence.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
using TrixiShallowWater | ||
|
||
############################################################################### | ||
# Semidiscretization of the two-layer shallow water equations with a periodic | ||
# bottom topography function (set in the initial conditions) | ||
|
||
equations = ShallowWaterMultiLayerEquations2D(gravity_constant = 10.0, | ||
rhos = (0.9, 1.0, 1.1)) | ||
|
||
initial_condition = initial_condition_convergence_test | ||
|
||
############################################################################### | ||
# Get the DG approximation space | ||
|
||
volume_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal) | ||
surface_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal) | ||
solver = DGSEM(polydeg = 8, surface_flux = surface_flux, | ||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
############################################################################### | ||
# This setup is for the curved, split form convergence test on a periodic domain | ||
|
||
# Get the unstructured quad mesh from a file (downloads the file if not available locally) | ||
mesh_file = Trixi.download("https://gist.githubusercontent.com/andrewwinters5000/8f8cd23df27fcd494553f2a89f3c1ba4/raw/85e3c8d976bbe57ca3d559d653087b0889535295/mesh_alfven_wave_with_twist_and_flip.mesh", | ||
joinpath(@__DIR__, "mesh_alfven_wave_with_twist_and_flip.mesh")) | ||
|
||
mesh = UnstructuredMesh2D(mesh_file, periodicity = true) | ||
|
||
# Create the semidiscretization object | ||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, | ||
source_terms = source_terms_convergence_test) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 1.0) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 500 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 500, | ||
save_initial_solution = true, | ||
save_final_solution = true) | ||
|
||
callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
# use a Runge-Kutta method with automatic (error based) time step size control | ||
sol = solve(ode, RDPK3SpFSAL49(), abstol = 1.0e-8, reltol = 1.0e-8, | ||
save_everystep = false, callback = callbacks); | ||
|
||
summary_callback() # print the timer summary |
97 changes: 97 additions & 0 deletions
97
examples/unstructured_2d_dgsem/elixir_shallowwater_multilayer_dam_break.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
using TrixiShallowWater | ||
|
||
############################################################################### | ||
# Semidiscretization of the multilayer shallow water equations for a dam break test with a | ||
# discontinuous bottom topography function to test entropy conservation | ||
|
||
equations = ShallowWaterMultiLayerEquations2D(gravity_constant = 1.0, | ||
rhos = (0.9, 0.95, 1.0)) | ||
|
||
# This academic testcase sets up a discontinuous bottom topography | ||
# function and initial condition to test entropy conservation. | ||
|
||
function initial_condition_dam_break(x, t, equations::ShallowWaterMultiLayerEquations2D) | ||
# Bottom topography | ||
b = 0.3 * exp(-0.5 * ((x[1] - sqrt(2) / 2)^2 + (x[2] - sqrt(2) / 2)^2)) | ||
|
||
if x[1] < sqrt(2) / 2 | ||
H = SVector(1.0, 0.8, 0.6) | ||
else | ||
H = SVector(0.9, 0.7, 0.5) | ||
b += 0.1 | ||
end | ||
|
||
v1 = zero(H) | ||
v2 = zero(H) | ||
return prim2cons(SVector(H..., v1..., v2..., b), | ||
equations) | ||
end | ||
|
||
initial_condition = initial_condition_dam_break | ||
|
||
boundary_condition_constant = BoundaryConditionDirichlet(initial_condition_dam_break) | ||
|
||
############################################################################### | ||
# Get the DG approximation space | ||
|
||
volume_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal) | ||
surface_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal) | ||
solver = DGSEM(polydeg = 6, surface_flux = surface_flux, | ||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
############################################################################### | ||
# Get the unstructured quad mesh from a file (downloads the file if not available locally) | ||
mesh_file = Trixi.download("https://gist.githubusercontent.com/andrewwinters5000/8f8cd23df27fcd494553f2a89f3c1ba4/raw/85e3c8d976bbe57ca3d559d653087b0889535295/mesh_alfven_wave_with_twist_and_flip.mesh", | ||
joinpath(@__DIR__, "mesh_alfven_wave_with_twist_and_flip.mesh")) | ||
|
||
mesh = UnstructuredMesh2D(mesh_file, periodicity = false) | ||
|
||
# Boundary conditions | ||
boundary_condition = Dict(:Top => boundary_condition_slip_wall, | ||
:Left => boundary_condition_slip_wall, | ||
:Right => boundary_condition_slip_wall, | ||
:Bottom => boundary_condition_slip_wall) | ||
|
||
# Create the semi discretization object | ||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, | ||
solver, boundary_conditions = boundary_condition) | ||
|
||
############################################################################### | ||
# ODE solver | ||
|
||
tspan = (0.0, 0.5) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
############################################################################### | ||
# Callbacks | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 500 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval, | ||
save_analysis = false, | ||
extra_analysis_integrals = (energy_total, | ||
energy_kinetic, | ||
energy_internal)) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 500, | ||
save_initial_solution = true, | ||
save_final_solution = true) | ||
|
||
stepsize_callback = StepsizeCallback(cfl = 1.0) | ||
|
||
callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution, | ||
stepsize_callback) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false), | ||
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback | ||
save_everystep = false, callback = callbacks); | ||
summary_callback() # print the timer summary |
Oops, something went wrong.