-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Refactor precision tests and passed all
- Loading branch information
Showing
7 changed files
with
601 additions
and
92 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
using Trixi, TrixiGPU | ||
using OrdinaryDiffEq | ||
|
||
# The example is taken from the Trixi.jl | ||
|
||
############################################################################### | ||
# semidiscretization of the hyperbolic diffusion equations | ||
|
||
equations = HyperbolicDiffusionEquations1D() | ||
|
||
initial_condition = initial_condition_poisson_nonperiodic | ||
|
||
boundary_conditions = boundary_condition_poisson_nonperiodic | ||
|
||
solver = DGSEM(polydeg = 4, surface_flux = flux_lax_friedrichs) | ||
|
||
coordinates_min = 0.0 | ||
coordinates_max = 1.0 | ||
mesh = TreeMesh(coordinates_min, coordinates_max, | ||
initial_refinement_level = 3, | ||
n_cells_max = 30_000, | ||
periodicity = false) | ||
|
||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, | ||
boundary_conditions = boundary_conditions, | ||
source_terms = source_terms_poisson_nonperiodic) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 5.0) | ||
ode = semidiscretize_gpu(semi, tspan) # from TrixiGPU.jl | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
resid_tol = 5.0e-12 | ||
steady_state_callback = SteadyStateCallback(abstol = resid_tol, reltol = 0.0) | ||
|
||
analysis_interval = 100 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval, | ||
extra_analysis_integrals = (entropy, energy_total)) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 100, | ||
save_initial_solution = true, | ||
save_final_solution = true, | ||
solution_variables = cons2prim) | ||
|
||
stepsize_callback = StepsizeCallback(cfl = 1.0) | ||
|
||
callbacks = CallbackSet(summary_callback, steady_state_callback, | ||
analysis_callback, alive_callback, | ||
save_solution, | ||
stepsize_callback) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false), | ||
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback | ||
save_everystep = false, callback = callbacks) | ||
summary_callback() # print the timer summary |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
using Trixi, TrixiGPU | ||
using OrdinaryDiffEq | ||
|
||
# The example is taken from the Trixi.jl | ||
|
||
############################################################################### | ||
# semidiscretization of the hyperbolic diffusion equations | ||
|
||
equations = HyperbolicDiffusionEquations2D() | ||
|
||
initial_condition = initial_condition_poisson_nonperiodic | ||
|
||
boundary_conditions = (x_neg = boundary_condition_poisson_nonperiodic, | ||
x_pos = boundary_condition_poisson_nonperiodic, | ||
y_neg = boundary_condition_periodic, | ||
y_pos = boundary_condition_periodic) | ||
|
||
solver = DGSEM(polydeg = 4, surface_flux = flux_lax_friedrichs) | ||
|
||
coordinates_min = (0.0, 0.0) | ||
coordinates_max = (1.0, 1.0) | ||
mesh = TreeMesh(coordinates_min, coordinates_max, | ||
initial_refinement_level = 3, | ||
n_cells_max = 30_000, | ||
periodicity = (false, true)) | ||
|
||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, | ||
boundary_conditions = boundary_conditions, | ||
source_terms = source_terms_poisson_nonperiodic) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 5.0) | ||
ode = semidiscretize_gpu(semi, tspan) # from TrixiGPU.jl | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
resid_tol = 5.0e-12 | ||
steady_state_callback = SteadyStateCallback(abstol = resid_tol, reltol = 0.0) | ||
|
||
analysis_interval = 100 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 100, | ||
save_initial_solution = true, | ||
save_final_solution = true, | ||
solution_variables = cons2prim) | ||
|
||
stepsize_callback = StepsizeCallback(cfl = 1.0) | ||
|
||
callbacks = CallbackSet(summary_callback, steady_state_callback, | ||
analysis_callback, alive_callback, | ||
save_solution, | ||
stepsize_callback) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false), | ||
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback | ||
save_everystep = false, callback = callbacks) | ||
summary_callback() # print the timer summary |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
using Trixi, TrixiGPU | ||
using OrdinaryDiffEq | ||
|
||
# The example is taken from the Trixi.jl | ||
|
||
############################################################################### | ||
# semidiscretization of the hyperbolic diffusion equations | ||
|
||
equations = HyperbolicDiffusionEquations3D() | ||
|
||
initial_condition = initial_condition_poisson_nonperiodic | ||
boundary_conditions = (x_neg = boundary_condition_poisson_nonperiodic, | ||
x_pos = boundary_condition_poisson_nonperiodic, | ||
y_neg = boundary_condition_periodic, | ||
y_pos = boundary_condition_periodic, | ||
z_neg = boundary_condition_periodic, | ||
z_pos = boundary_condition_periodic) | ||
|
||
solver = DGSEM(polydeg = 4, surface_flux = flux_lax_friedrichs) | ||
|
||
coordinates_min = (0.0, 0.0, 0.0) | ||
coordinates_max = (1.0, 1.0, 1.0) | ||
mesh = TreeMesh(coordinates_min, coordinates_max, | ||
initial_refinement_level = 2, | ||
n_cells_max = 30_000, | ||
periodicity = (false, true, true)) | ||
|
||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, | ||
source_terms = source_terms_poisson_nonperiodic, | ||
boundary_conditions = boundary_conditions) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 5.0) | ||
ode = semidiscretize_gpu(semi, tspan) # from TrixiGPU.jl | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
resid_tol = 1.0e-5 | ||
steady_state_callback = SteadyStateCallback(abstol = resid_tol, reltol = 0.0) | ||
|
||
analysis_interval = 200 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval, | ||
extra_analysis_integrals = (entropy, energy_total)) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 100, | ||
save_initial_solution = true, | ||
save_final_solution = true, | ||
solution_variables = cons2prim) | ||
|
||
stepsize_callback = StepsizeCallback(cfl = 1.8) | ||
|
||
callbacks = CallbackSet(summary_callback, steady_state_callback, | ||
analysis_callback, alive_callback, | ||
save_solution, | ||
stepsize_callback) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
sol = Trixi.solve(ode, Trixi.HypDiffN3Erk3Sstar52(), | ||
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback | ||
save_everystep = false, callback = callbacks) | ||
summary_callback() # print the timer summary |
Oops, something went wrong.