-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
tests/baseline_compat/hyperon-mettalog_sanity/time_synthesize.metta
- Loading branch information
Showing
1 changed file
with
156 additions
and
0 deletions.
There are no files selected for viewing
156 changes: 156 additions & 0 deletions
156
tests/baseline_compat/hyperon-mettalog_sanity/time_synthesize.metta
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,156 @@ | ||
;; Import modules | ||
|
||
;; Define Nat | ||
(: Nat Type) | ||
(: Z Nat) | ||
(: S (-> Nat Nat)) | ||
|
||
;; Enumerate all programs up to a given depth that are consistent with | ||
;; the query | ||
;; using the given axiom non-deterministic functions and rules. | ||
;; | ||
;; The arguments are: | ||
;; | ||
;; $query: an Atom under the form (: TERM TYPE). The atom may contain | ||
;; free variables within TERM and TYPE to form various sort of | ||
;; queries | ||
;; such as: | ||
;; 1. Backward chaining: (: $term (Inheritance $x Mammal)) | ||
;; 2. Forward chaining: (: ($rule $premise AXIOM) $type) | ||
;; 3. Mixed chaining: (: ($rule $premise AXIOM) (Inheritance $x Mammal)) | ||
;; 4. Type checking: (: TERM TYPE) | ||
;; 5. Type inference: (: TERM $type) | ||
;; | ||
;; $kb: a nullary function to axiom | ||
;; to non-deterministically pick up | ||
;; an axiom. An axiom is an Atom of the form (: TERM TYPE). | ||
;; | ||
;; $rb: a nullary function to rule | ||
;; to non-deterministically pick up a | ||
;; rule. A rule is a function mapping premises to conclusion | ||
;; | ||
;; where premises and conclusion have the form (: TERM TYPE). | ||
;; | ||
;; $depth: a Nat representing the maximum depth of the generated | ||
;; programs. | ||
;; | ||
;; TODO: recurse over curried rules instead of duplicating code over | ||
;; tuples. | ||
(: synthesize (-> $a (-> $kt) (-> $rt) Nat $a)) | ||
;; Nullary rule (axiom) | ||
(= (synthesize $query $kb $rb $depth) | ||
(let $query ($kb) $query)) | ||
;; Unary rule | ||
(= (synthesize $query $kb $rb (S $k)) | ||
(let* (((: $ructor (-> $premise $conclusion)) ($rb)) | ||
((: ($ructor $proof) $conclusion) $query) | ||
((: $proof $premise) (synthesize (: $proof $premise) $kb $rb $k))) | ||
$query)) | ||
;; Binary rule | ||
(= (synthesize $query $kb $rb (S $k)) | ||
(let* (((: $ructor (-> $premise1 $premise2 $conclusion)) ($rb)) | ||
((: ($ructor $proof1 $proof2) $conclusion) $query) | ||
((: $proof1 $premise1) (synthesize (: $proof1 $premise1) $kb $rb $k)) | ||
((: $proof2 $premise2) (synthesize (: $proof2 $premise2) $kb $rb $k))) | ||
$query)) | ||
;; Trinary rule | ||
(= (synthesize $query $kb $rb (S $k)) | ||
(let* (((: $ructor (-> $premise1 $premise2 $premise3 $conclusion)) ($rb)) | ||
((: ($ructor $proof1 $proof2 $proof3) $conclusion) $query) | ||
((: $proof1 $premise1) (synthesize (: $proof1 $premise1) $kb $rb $k)) | ||
((: $proof2 $premise2) (synthesize (: $proof2 $premise2) $kb $rb $k)) | ||
((: $proof3 $premise3) (synthesize (: $proof3 $premise3) $kb $rb $k))) | ||
$query)) | ||
;; Quaternary rule | ||
(= (synthesize $query $kb $rb (S $k)) | ||
(let* (((: $ructor (-> $premise1 $premise2 $premise3 $premise4 $conclusion)) ($rb)) | ||
((: ($ructor $proof1 $proof2 $proof3 $proof4) $conclusion) $query) | ||
((: $proof1 $premise1) (synthesize (: $proof1 $premise1) $kb $rb $k)) | ||
((: $proof2 $premise2) (synthesize (: $proof2 $premise2) $kb $rb $k)) | ||
((: $proof3 $premise3) (synthesize (: $proof3 $premise3) $kb $rb $k)) | ||
((: $proof4 $premise4) (synthesize (: $proof4 $premise4) $kb $rb $k))) | ||
$query)) | ||
;; Quintenary rule | ||
(= (synthesize $query $kb $rb (S $k)) | ||
(let* (((: $ructor (-> $premise1 $premise2 $premise3 $premise4 $premise5 $conclusion)) ($rb)) | ||
((: ($ructor $proof1 $proof2 $proof3 $proof4 $proof5) $conclusion) $query) | ||
((: $proof1 $premise1) (synthesize (: $proof1 $premise1) $kb $rb $k)) | ||
((: $proof2 $premise2) (synthesize (: $proof2 $premise2) $kb $rb $k)) | ||
((: $proof3 $premise3) (synthesize (: $proof3 $premise3) $kb $rb $k)) | ||
((: $proof4 $premise4) (synthesize (: $proof4 $premise4) $kb $rb $k)) | ||
((: $proof5 $premise5) (synthesize (: $proof5 $premise5) $kb $rb $k))) | ||
$query)) | ||
|
||
(: kb (-> Atom)) | ||
(= (kb) (: a A)) | ||
(= (kb) (: a B)) | ||
(= (kb) (: abc (Implication (AndLink A B) C))) | ||
(= (kb) (: cde (Implication (OrLink C D) E))) | ||
|
||
!(assertEqualToResult | ||
(kb) | ||
( (: abc (Implication (AndLink A B) C)) | ||
(: a A) | ||
(: a B) | ||
(: cde (Implication (OrLink C D) E)))) | ||
|
||
|
||
(: rb (-> Atom)) | ||
(= (rb) (: ModusPonens (-> (ImplicationLink $p $q) $p $q))) | ||
(= (rb) (: Deduction (-> (ImplicationLink $p $q) (ImplicationLink $q $r) (ImplicationLink $p $r)))) | ||
(= (rb) (: DisjunctiveSyllogism (-> (OrLink $p $q) (NotLink $p) $q))) | ||
(= (rb) (: DisjunctiveSyllogism (-> (OrLink $p $q) (NotLink $q) $p))) | ||
(= (rb) (: ConjunctionIntroduction (-> $p $q (AndLink $p $q)))) | ||
(= (rb) (: ConjunctionEliminationLeft (-> (AndLink $p $q) $p))) | ||
(= (rb) (: ConjunctionEliminationRight (-> (AndLink $p $q) $q))) | ||
(= (rb) (: DisjunctionIntroduction (-> $p $q (OrLink $p $q)))) | ||
|
||
|
||
!(assertEqualToResult | ||
(rb) | ||
( (: ModusPonens (-> (ImplicationLink $p_191 $q_192) $p_191 $q_192)) | ||
(: Deduction (-> (ImplicationLink $p_193 $q_194) (ImplicationLink $q_194 $r_195) (ImplicationLink $p_193 $r_195))) | ||
(: ConjunctionIntroduction (-> $p_196 $q_197 (AndLink $p_196 $q_197))) | ||
(: DisjunctiveSyllogism (-> (OrLink $p_198 $q_199) (NotLink $q_199) $p_198)) | ||
(: DisjunctiveSyllogism (-> (OrLink $p_200 $q_201) (NotLink $p_200) $q_201)) | ||
(: ConjunctionEliminationLeft (-> (AndLink $p_202 $q_203) $p_202)) | ||
(: DisjunctionIntroduction (-> $p_204 $q_205 (OrLink $p_204 $q_205))) | ||
(: ConjunctionEliminationRight (-> (AndLink $p_206 $q_207) $q_207)))) | ||
|
||
|
||
!(assertEqualToResult | ||
(synthesize (: $term $type) kb rb (S Z)) | ||
((: abc (Implication (AndLink A B) C)) | ||
(: cde (Implication (OrLink C D) E)) (: a A) (: a B) | ||
(: (ConjunctionIntroduction abc abc) (AndLink (Implication (AndLink A B) C) (Implication (AndLink A B) C))) | ||
(: (ConjunctionIntroduction abc cde) (AndLink (Implication (AndLink A B) C) (Implication (OrLink C D) E))) | ||
(: (ConjunctionIntroduction abc a) (AndLink (Implication (AndLink A B) C) A)) | ||
(: (ConjunctionIntroduction abc a) (AndLink (Implication (AndLink A B) C) B)) | ||
(: (ConjunctionIntroduction cde abc) (AndLink (Implication (OrLink C D) E) (Implication (AndLink A B) C))) | ||
(: (ConjunctionIntroduction cde cde) (AndLink (Implication (OrLink C D) E) (Implication (OrLink C D) E))) | ||
(: (ConjunctionIntroduction cde a) (AndLink (Implication (OrLink C D) E) A)) | ||
(: (ConjunctionIntroduction cde a) (AndLink (Implication (OrLink C D) E) B)) | ||
(: (ConjunctionIntroduction a abc) (AndLink A (Implication (AndLink A B) C))) | ||
(: (ConjunctionIntroduction a cde) (AndLink A (Implication (OrLink C D) E))) | ||
(: (ConjunctionIntroduction a a) (AndLink A A)) | ||
(: (ConjunctionIntroduction a a) (AndLink A B)) | ||
(: (ConjunctionIntroduction a abc) (AndLink B (Implication (AndLink A B) C))) | ||
(: (ConjunctionIntroduction a cde) (AndLink B (Implication (OrLink C D) E))) | ||
(: (ConjunctionIntroduction a a) (AndLink B A)) | ||
(: (ConjunctionIntroduction a a) (AndLink B B)) | ||
(: (DisjunctionIntroduction abc abc) (OrLink (Implication (AndLink A B) C) (Implication (AndLink A B) C))) | ||
(: (DisjunctionIntroduction abc cde) (OrLink (Implication (AndLink A B) C) (Implication (OrLink C D) E))) | ||
(: (DisjunctionIntroduction abc a) (OrLink (Implication (AndLink A B) C) A)) | ||
(: (DisjunctionIntroduction abc a) (OrLink (Implication (AndLink A B) C) B)) | ||
(: (DisjunctionIntroduction cde abc) (OrLink (Implication (OrLink C D) E) (Implication (AndLink A B) C))) | ||
(: (DisjunctionIntroduction cde cde) (OrLink (Implication (OrLink C D) E) (Implication (OrLink C D) E))) | ||
(: (DisjunctionIntroduction cde a) (OrLink (Implication (OrLink C D) E) A)) | ||
(: (DisjunctionIntroduction cde a) (OrLink (Implication (OrLink C D) E) B)) | ||
(: (DisjunctionIntroduction a abc) (OrLink A (Implication (AndLink A B) C))) | ||
(: (DisjunctionIntroduction a cde) (OrLink A (Implication (OrLink C D) E))) | ||
(: (DisjunctionIntroduction a a) (OrLink A A)) | ||
(: (DisjunctionIntroduction a a) (OrLink A B)) | ||
(: (DisjunctionIntroduction a abc) (OrLink B (Implication (AndLink A B) C))) | ||
(: (DisjunctionIntroduction a cde) (OrLink B (Implication (OrLink C D) E))) | ||
(: (DisjunctionIntroduction a a) (OrLink B A)) | ||
(: (DisjunctionIntroduction a a) (OrLink B B)))) |