Skip to content

Commit

Permalink
update homepage
Browse files Browse the repository at this point in the history
  • Loading branch information
Yuwei Yan committed Jan 7, 2025
1 parent 0417eb3 commit 526c27e
Showing 1 changed file with 29 additions and 21 deletions.
50 changes: 29 additions & 21 deletions docs/pages/modeling-track.html
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,14 @@
border-left: 4px solid #007bff;
}

.section h4 {
color: #2c3e50;
font-size: 1.2em;
margin: 20px 0 10px;
padding-left: 15px;
border-left: 4px solid #007bff;
}

/* 链接样式 */
.section a {
color: #007bff;
Expand Down Expand Up @@ -196,50 +204,50 @@ <h2>Evaluation</h2>
After selecting the Top 20 teams to enter the Final Phase, the evaluation results will be calculated based on 40% simulation data and 60% real data.
The evaluation criteria include:
</p>

<h3>Star Rating Accuracy</h3>

<h3>Preference Estimation</h3>
<ul>
<li>The preference estimation is calculated based on the star rating accuracy.</li>
<li><b>Metric:</b> 1 - MAE of star ratings, indicating the deviation from actual preferences.</li>
</ul>

<h4>Star Rating Accuracy</h4>
<ul>
<li><b>Metric:</b> Mean Absolute Error (MAE)</li>
<li><b>Description:</b> The predicted star ratings will be compared to ground truth values, normalized to the range [0,1].</li>
<li><b>Formula:</b></li>
</ul>
<p>
<pre>
MAE = (1 / N) * Σ |s_ni_hat - s_ni|
</pre>
where <i>N</i> is the total number of reviews, and <i>s_ni_hat</i> and <i>s_ni</i> are the normalized predicted and ground truth star ratings, respectively. Similar evaluation method has been used in [3].
\[
MAE = \frac{1}{N} \sum_{i=1}^{N} |{\hat{s}_{ni} - s_{ni}}|
\]
where \(N\) is the total number of reviews, and \(\hat{s}_{ni}\) and \(s_{ni}\) are the normalized predicted and ground truth star ratings, respectively. Similar evaluation method has been used in [3].
</p>

<h3>Emotional Tone</h3>
<h3>Review Generation</h3>
<ul>
<li>The review generation is calculated based on the review metrics.</li>
<li><b>Metric:</b> 1 - (Emotional Tone Error * 0.25 + Sentiment Attitude Error * 0.25 + Topic Relevance Error * 0.5), indicating the deviation from actual reviews.</li>
</ul>

<h4>Emotional Tone Error</h4>
<ul>
<li>A vector of emotion scores for the top five emotions in the review text is calculated using a predefined emotion classifier model [1], with each dimension normalized to the range [0,1].</li>
<li><b>Metric:</b> Mean Absolute Error (MAE) of normalized emotion scores, reflecting the deviation from the actual emotions.</li>
</ul>

<h3>Sentiment Attitude</h3>
<h4>Sentiment Attitude Error</h4>
<ul>
<li>The sentiment attitude of the review text is analyzed using <i>nltk.sentiment.SentimentIntensityAnalyzer()</i>, with the resulting value normalized to the range [0,1].</li>
<li><b>Metric:</b> Mean Absolute Error (MAE) of normalized sentiment scores, indicating the deviation from actual sentiment attitude.</li>
</ul>

<h3>Topic Relevance</h3>
<h4>Topic Relevance Error</h4>
<ul>
<li>An embedding vector for the review text is generated using a predefined embedding model [2].</li>
<li><b>Metric:</b> Cosine similarity between text embeddings, measuring alignment with the real topics.</li>
</ul>

<h3>Preference Estimation</h3>
<ul>
<li>The preference estimation is calculated based on the star rating accuracy.</li>
<li><b>Metric:</b> 1 - MAE of star ratings, indicating the deviation from actual preferences.</li>
</ul>

<h3>Review Generation</h3>
<ul>
<li>The review generation is calculated based on the review metrics.</li>
<li><b>Metric:</b> 1 - (Emotional Tone Error * 0.25 + Sentiment Attitude Error * 0.25 + Topic Relevance Error * 0.5), indicating the deviation from actual reviews.</li>
</ul>

<h3>Overall Quality</h3>
<ul>
<li>The overall quality is calculated based on the preference estimation and review generation.</li>
Expand Down

0 comments on commit 526c27e

Please sign in to comment.