Skip to content

tsukubachallenge/tc-datasets

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

58 Commits
 
 

Repository files navigation

Tsukuba Challenge Datasets

Real World Datasets for Autonomous Navigation

Name Provider (Team) Type Location
map_tc21_mapiv MapIV Map Tsukuba Challenge 2021 Course
map_tc19_gnss+ins_furo fuRo Map Tsukuba Challenge 2019 Course
tc19_furo fuRo Sensor Tsukuba Challenge 2019 Course
map_tc19_furo fuRo Map Tsukuba Challenge 2019 Course
tc19_tsuchiura-pj Tsuchiura Project Sensor Tsukuba Challenge 2019 Course
tc18_furo fuRo Sensor Tsukuba Challenge 2018 Course
map_tc18_furo fuRo Map Tsukuba Challenge 2018 Course
iias_tsukuba23 Aqua (University of Tsukuba) Sensor iias Tsukuba 2023
utsukuba22_university_of_tsukuba University of Tsukuba Sensor Tsukuba campus 2022
map_utsukuba22_university_of_tsukuba University of Tsukuba Map Tsukuba campus 2022
tsudanuma20_cit Chiba Institute of Technology Sensor Tsudanuma 2020
map_tsudanuma20_cit Chiba Institute of Technology Map Tsudanuma 2020
## Example Course Template

### Course Name, Team Name, Sensor Data / Map Data

Tsukuba Challenge 2021 Course

TC2021, MapIV, SLAM Map Data

  • Short Name: map_tc21_mapiv
  • Provider (Team): MapIV
  • Type: Map
  • Location: Tsukuba Challenge 2021 Course
  • File: 0.15_map_all.pcd (505 MB), map_converted*.pcd (10.9 GB)
  • Size: 505 MB, 10.9GB
  • Format: pcd
  • Number of Points: 31,559,485, 682,377,762
  • Point Type:
    • XYZ: Yes
    • Intensity: Yes
    • Color: No
    • Normal: No
  • SLAM Method: MapIV Engine (HESAI PandarXT-32 + Septentrio mosaic)
  • Description: The LiDAR measurement of more than 70 meters is cut off. "map_converted*.pcd" are raw point cloud maps, and "0.15_map_all.pcd" is a downsampled and concatenated map of them. We used Voxel Grid Filter for downsamapling. Map coordinate system is the Japan Plane Rectangular CS IXj, and its height is orthometric height.
  • License: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

Tsukuba Challenge 2019 Course

TC2019, fuRo, GNSS+INS Map Data

TC2019, fuRo, Sensor Data

If you use our dataset in your academic work, please cite the following paper [DOI]:

Yoshitaka Hara and Masahiro Tomono: "Moving Object Removal and Surface Mesh Mapping for Path Planning on 3D Terrain", Advanced Robotics, vol. 34, no. 6, pp. 375--387, 2020.

TC2019, fuRo, Map Data

If you use our dataset in your academic work, please cite the following paper [DOI]:

Yoshitaka Hara and Masahiro Tomono: "Moving Object Removal and Surface Mesh Mapping for Path Planning on 3D Terrain", Advanced Robotics, vol. 34, no. 6, pp. 375--387, 2020.

TC2019, Tsuchiura Project, Sensor Data

  • Short Name: tc19_tsuchiura-pj
  • Provider (Team): Tsuchiura Project
  • Type: Sensor
  • Location: Tsukuba Challenge 2019 Course
  • File: 2019-11-10-13-37-16.bag
  • Size: 12.8 GB
  • Format: rosbag
  • Date: 2019-11-10 13:37:16
  • Duration: 53:18s
  • Setup: Mobile Robot (Autonomous Operation)
  • Sensors:
    • Lidar: Hokuyo YVT-X002, UTM-30LX-EW, URM-40LC-EW
    • Camera: Ricoh Theta S, Logicool C920
    • Radar: No
    • GNSS: u-blox NEO-M8T
    • IMU: No
    • Motor Encoders (Wheel Odometry): Yes
  • Description: This bag file is compressed with 7z.
  • License: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

Tsukuba Challenge 2018 Course

TC2018, fuRo, Sensor Data

If you use our dataset in your academic work, please cite the following paper [DOI]:

Yoshitaka Hara and Masahiro Tomono: "Moving Object Removal and Surface Mesh Mapping for Path Planning on 3D Terrain", Advanced Robotics, vol. 34, no. 6, pp. 375--387, 2020.

TC2018, fuRo, Map Data

If you use our dataset in your academic work, please cite the following paper [DOI]:

Yoshitaka Hara and Masahiro Tomono: "Moving Object Removal and Surface Mesh Mapping for Path Planning on 3D Terrain", Advanced Robotics, vol. 34, no. 6, pp. 375--387, 2020.

Other Courses

iias Tsukuba 2023, Aqua (University of Tsukuba), Sensor Data

UTsukuba 2022, University of Tsukuba, Sensor Data

  • Short Name: utsukuba22_university_of_tsukuba
  • Provider (Team): University of Tsukuba
  • Type: Sensor
  • Location: Tsukuba campus 2022
  • File: utsukuba22_university_of_tsukuba.bag.zst
  • Size: 8 GB
  • Format: rosbag
  • Date: 2022-07-09 10:34:13
  • Duration: 47:02s
  • Setup: Mobile Robot (Joystick Operation)
  • Sensors:
    • Lidar: Velodyne VLP-16
    • Camera: No
    • Radar: No
    • GNSS: No
    • IMU: LOAD MicroStrain 3DM-GX5-25
    • Motor Encoders (Wheel Odometry): Yes
  • Description: This bag file is compressed with a command zstd. You can decompress with the command zstd -d utsukuba22_university_of_tsukuba.bag.zst
  • License: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

UTsukuba 2022, University of Tsukuba, Map Data

[WIP] Tsudanuma 2020, fuRo, Sensor Data

Tsudanuma 2020, Chiba Institute of Technology, Sensor Data

  • Short Name: tsudanuma20_cit
  • Provider (Team): Chiba Institute of Technology
  • Type: Sensor
  • Location: Tsudanuma 2020
  • File: tsudanuma20_cit_compressed.bag
  • Size: 57 GB
  • Format: rosbag
  • Date: 2020-08-27 17:43:12
  • Duration: 56:12s
  • Setup: Mobile Robot (Joystick Operation)
  • Sensors:
    • Lidar: Velodyne VLP-16
    • Camera: Intel RealSense D435i (without depth)
    • Radar: No
    • GNSS: Drogger DG-PRO1RW (Independent Positioning)
    • IMU: Analog Devices ADIS16465
    • Motor Encoders (Wheel Odometry): Yes
  • Description: This bag file is compressed with a command rosbag compress.
  • License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Tsudanuma 2020, Chiba Institute of Technology, Map Data

  • Short Name: map_tsudanuma20_cit
  • Provider (Team): Chiba Institute of Technology
  • Location: Tsudanuma 2020
  • Type: Map
  • File: map_tsudanuma20_cit.pcd
  • Size: 490.8 MB
  • Format: pcd
  • Number of Points: 13,583,284
  • Point Type:
    • XYZ: Yes
    • Intensity: Yes
    • Color: No
    • Normal: Yes
  • SLAM Method: LIO-SAM
  • Description: Tsudanuma Campus of Chiba Institute of Technology.
  • License: Creative Commons Attribution 4.0 International (CC BY 4.0)

[WIP] Related Datasets

About

Real World Datasets for Autonomous Navigation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published