- Clone the repository
- Tensorflow 2.2.0+
- Tensorflow_addons
- Python 3.6+
- Keras 2.3.0
- PIL
- numpy
pip install -r requirements.txt
```
python train.py
```
usage: train.py [-h] [--logdir LOGDIR] [--image-size IMAGE_SIZE]
[--patch-size PATCH_SIZE] [--num-layers NUM_LAYERS]
[--d-model D_MODEL] [--num-heads NUM_HEADS]
[--mlp-dim MLP_DIM] [--lr LR] [--weight-decay WEIGHT_DECAY]
[--batch-size BATCH_SIZE] [--epochs EPOCHS]
optional arguments: -h, --help show this help message and exit
--log_dir folder to save weights
--image_size size of input image
--patch_size size of patch to encode
--num-layers number of transformer
--d-model embedding dimension
--mlp-dim hidden layer dimension
--lr learning rate
--weight-decay weight decay
--batch-size batch size
--epochs epochs
This project is licensed under the MIT License - see the LICENSE file for details
[1] AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE - link
[2] Text classification with Transformer - link
- This work is heavily based on Keras version of Transformer.
- Any ideas on updating or misunderstanding, please send me an email: [email protected]
- If you find this repo helpful, kindly give me a star.