-
Notifications
You must be signed in to change notification settings - Fork 4
Korektor
Dataset name | Source |
---|---|
korektor-czech-130202 | The current Korektor model |
syn2005 | Czech National Corpus (CNC) - http://hdl.handle.net/11858/00-097C-0000-0023-119E-8 |
syn2010 | Czech National Corpus (CNC) - http://hdl.handle.net/11858/00-097C-0000-0023-119F-6 |
Dataset name | Corpus size (tokens) | Error tokens |
---|---|---|
Olga | 1371 | 218 |
Dataset name | Corpus size (tokens) | Error tokens |
---|---|---|
Dejiny | 308050 | 134730 |
Lisky | 315100 | 122005 |
Povesti | 67369 | 26019 |
precision = TP / (TP + FP)
recall = TP / (TP + FN)
F1-score = 2 * (precision * recall) / (precision + recall)
Measure | Description |
---|---|
TP | Number of words with spelling errors that the spell checker detected correctly |
FP | Number of words identified as spelling errors that are not actually spelling errors |
TN | Number of correct words that the spell checker did not flag as having spelling errors |
FN | Number of words with spelling errors that the spell checker did not flag as having spelling errors |
Measure | Description |
---|---|
TP | Number of words with spelling errors for which the spell checker gave the correct suggestion |
FP | Number of words (with/without spelling errors) for which the spell checker made suggestions, and for those, either the suggestion is not needed (in the case of non-existing errors) or the suggestion is incorrect if indeed there was an error in the original word. |
TN | Number of correct words that the spell checker did not flag as having spelling errors and no suggestions were made. |
FN | Number of words with spelling errors that the spell checker did not flag as having spelling errors or did not provide any suggestions |
Dataset | Max edit distance | Precision | Recall | F1-score |
---|---|---|---|---|
kor-cz-130202 | 1-edit | 94.7 | 90.8 | 92.7 |
syn2005 | “ | 95.7 | 90.8 | 93.2 |
syn2010 | “ | 94.7 | 89.9 | 92.2 |
kor-cz-130202 | 2-edit | 94.1 | 95.4 | 94.8 |
syn2005 | “ | 95.0 | 95.9 | 95.4 |
syn2010 | “ | 94.1 | 95.0 | 94.5 |
kor-cz-130202 | 3edit | 94.1 | 95.4 | 94.8 |
syn2005 | “ | 95.0 | 95.9 | 95.4 |
syn2010 | “ | 94.1 | 95.0 | 94.5 |
kor-cz-130202 | 4-edit | 94.1 | 95.4 | 94.8 |
syn2005 | “ | 95.0 | 95.9 | 95.4 |
syn2010 | “ | 94.1 | 95.0 | 94.5 |
kor-cz-130202 | 5-edit | 94.1 | 95.4 | 94.8 |
syn2005 | “ | 95.0 | 95.9 | 95.4 |
syn2010 | “ | 94.1 | 95.0 | 94.5 |
Note that the results are same for edit distances 2,3,4,5. This maybe due to the edit distance parameter does not really influence the error detection much.
Item | top-1 | top-1 | top-1 | top-2 | top-2 | top-2 | top-3 | top-3 | top-3 ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ dataset | precision | recall | F1-score | precision | recall | F1-score | precision | recall | F1-score kor-cz-130202-1-ed | 85.2 | 89.9 | 87.5 | 90.9 | 90.5 | 90.7 | 93.3 | 90.7 | 92.0 syn2005-1-ed | 87.9 | 90.1 | 89.0 | 92.3 | 90.5 | 91.4 | 93.7 | 90.7 | 92.2 syn2010-1-ed | 86.0 | 89.0 | 87.5 | 91.8 | 89.6 | 90.7 | 92.3 | 89.7 | 91.0 kor-cz-130202-2-ed | 84.2 | 94.9 | 89.2 | 91.0 | 95.3 | 93.1 | 93.2 | 95.4 | 94.3 syn2005-2-ed | 86.8 | 95.5 | 91.0 | 91.8 | 95.7 | 93.7 | 93.2 | 95.8 | 94.5 syn2010-2-ed | 85.0 | 94.4 | 89.5 | 91.4 | 94.8 | 93.1 | 92.3 | 94.9 | 93.5 kor-cz-130202-3-ed | 84.2 | 94.9 | 89.2 | 91.0 | 95.3 | 93.1 | 93.2 | 95.4 | 94.3 syn2005-3-ed | 86.8 | 95.5 | 91.0 | 91.4 | 95.7 | 93.5 | 92.7 | 95.8 | 94.2 syn2010-3-ed | 85.0 | 94.4 | 89.5 | 90.9 | 94.8 | 92.8 | 91.8 | 94.8 | 93.3 kor-cz-130202-4-ed | 84.2 | 94.9 | 89.2 | 91.0 | 95.3 | 93.1 | 93.2 | 95.4 | 94.3 syn2005-4-ed | 86.8 | 95.5 | 91.0 | 91.4 | 95.7 | 93.5 | 92.7 | 95.8 | 94.2 syn2010-4-ed | 85.0 | 94.4 | 89.5 | 90.9 | 94.8 | 92.8 | 91.8 | 94.8 | 93.3 kor-cz-130202-5-ed | 84.2 | 94.9 | 89.2 | 91.0 | 95.3 | 93.1 | 93.2 | 95.4 | 94.3 syn2005-5-ed | 86.8 | 95.5 | 91.0 | 91.4 | 95.7 | 93.5 | 92.7 | 95.8 | 94.2 syn2010-5-ed | 85.0 | 94.4 | 89.5 | 90.9 | 94.8 | 92.8 | 91.8 | 94.8 | 93.3
Key | Description |
---|---|
No pruning | no pruning in the n-gram counts |
prune_001 | trigram pruning (singleton) |
prune_01 | trigram+bigram pruning (singleton) |
prune_02 | trigram+bigram pruning (singleton+ count 2 ngrams) |
Ken LM parameters | ARPA LM | Binarized KenLM | Binarized Korektor LM |
---|---|---|---|
No pruning | 3.2G | 415MB | |
prune_001 | 1.2G | 884M (probing), 425M (trie) | 194M |
prune_01 | 540M | 401M (probing), 202M (trie) | 82M |
prune_02 | 290M | 240M (probing), 135M (trie) | 46M |
Test dataset | LM pruning parameters | Precision | Recall | F1-score |
---|---|---|---|---|
Olga | no_pruning | 95.0 | 95.9 | 95.4 |
" | prune_001 | 95.0 | 95.9 | 95.4 |
" | prune_01 | 95.0 | 95.9 | 95.4 |
" | prune_02 | 95.0 | 95.9 | 95.4 |
-/- | -/- | top-1 | top-1 | top-1 | top-2 | top-2 | top-2 | top-3 | top-3 | top-3 |
---|---|---|---|---|---|---|---|---|---|---|
Test dataset | LM pruning parameters | precision | recall | F1-score | precision | recall | F1-score | precision | recall | F1-score |
Olga | no_pruning | 86.8 | 95.5 | 91.0 | 91.8 | 95.7 | 93.7 | 93.2 | 95.8 | 94.5 |
" | prune_001 | 87.3 | 95.5 | 91.2 | 91.8 | 95.7 | 93.7 | 93.2 | 95.8 | 94.5 |
" | prune_01 | 87.7 | 95.5 | 91.5 | 91.8 | 95.7 | 93.7 | 93.2 | 95.8 | 94.5 |
" | prune_02 | 86.4 | 95.5 | 90.7 | 91.4 | 95.7 | 93.5 | 92.7 | 95.8 | 94.2 |
Test dataset | LM pruning parameters | Precision | Recall | F1-score |
---|---|---|---|---|
dejiny | no_pruning | 99.5 | 97.9 | 98.7 |
" | prune_001 | 99.5 | 97.9 | 98.7 |
" | prune_01 | 99.5 | 97.9 | 98.7 |
" | prune_02 | 99.5 | 97.8 | 98.6 |
lisky | no_pruning | 99.5 | 98.1 | 98.8 |
" | prune_001 | 99.5 | 98.1 | 98.8 |
" | prune_01 | 99.4 | 98.1 | 98.8 |
" | prune_02 | 99.4 | 98.1 | 98.8 |
povesti | no_pruning | 98.8 | 94.5 | 96.6 |
" | prune_001 | 98.7 | 94.5 | 96.6 |
" | prune_01 | 98.7 | 94.4 | 96.5 |
" | prune_02 | 98.7 | 94.4 | 96.5 |
-/- | -/- | top-1 | top-1 | top-1 | top-2 | top-2 | top-2 | top-3 | top-3 | top-3 |
---|---|---|---|---|---|---|---|---|---|---|
Test dataset | LM pruning parameters | precision | recall | F1-score | precision | recall | F1-score | precision | recall | F1-score |
dejiny | no_pruning | 98.8 | 97.9 | 98.4 | 99.4 | 97.9 | 98.6 | 99.4 | 97.9 | 98.6 |
" | prune_001 | 98.8 | 97.9 | 98.3 | 99.3 | 97.9 | 98.6 | 99.4 | 97.9 | 98.6 |
" | prune_01 | 98.8 | 97.8 | 98.3 | 99.3 | 97.9 | 98.6 | 99.4 | 97.9 | 98.6 |
" | prune_02 | 98.8 | 97.8 | 98.3 | 99.3 | 97.8 | 98.6 | 99.4 | 97.8 | 98.6 |
lisky | no_pruning | 98.5 | 98.1 | 98.3 | 99.1 | 98.1 | 98.6 | 99.2 | 98.1 | 98.7 |
" | prune_001 | 98.5 | 98.1 | 98.3 | 99.1 | 98.1 | 98.6 | 99.2 | 98.1 | 98.7 |
" | prune_01 | 98.4 | 98.1 | 98.3 | 99.1 | 98.1 | 98.6 | 99.2 | 98.1 | 98.7 |
" | prune_02 | 98.4 | 98.1 | 98.2 | 99.1 | 98.1 | 98.6 | 99.2 | 98.1 | 98.7 |
povesti | no_pruning | 96.2 | 94.4 | 95.3 | 97.6 | 94.4 | 96.0 | 98.0 | 94.5 | 96.2 |
" | prune_001 | 96.1 | 94.3 | 95.2 | 97.6 | 94.4 | 96.0 | 97.9 | 94.4 | 96.2 |
" | prune_01 | 96.1 | 94.3 | 95.2 | 97.5 | 94.4 | 95.9 | 97.9 | 94.4 | 96.1 |
" | prune_02 | 96.1 | 94.3 | 95.2 | 97.5 | 94.3 | 95.9 | 97.9 | 94.4 | 96.1 |