-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgl_util.cpp
209 lines (180 loc) · 7.98 KB
/
gl_util.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#include <iostream>
#include <string>
#include <vector>
#include "gl_util.h"
#include "tgaimage.h"
const TGAColor Util::COLOR_WHITE = TGAColor(255, 255, 255, 255);
const TGAColor Util::COLOR_RED = TGAColor(255, 0, 0, 255);
const TGAColor Util::COLOR_GREEN = TGAColor(0, 255, 0, 255);
const TGAColor Util::COLOR_BLUE = TGAColor(0, 0, 255, 255);
const TGAColor Util::COLOR_PURPLE = TGAColor(255, 0, 255, 255);
const TGAColor Util::COLOR_BACKGROUND_GRADIENT = TGAColor(-1, 0, 0, 255);
const TGAColor Util::COLOR_RANDOM = TGAColor(-2, 0, 0, 255);
const TGAColor Util::COLOR_TEXTURE = TGAColor(-3, 0, 0, 255);
Matrix Util::createViewportMatrix(int x, int y, int w, int h, int d) {
// | w/2 0 0 x+w/2 |
// | 0 h/2 0 y+h/2 |
// | 0 0 d/2 d/2 |
// | 0 0 0 1 |
Matrix m = Matrix::identity(4);
m[0][3] = x + w/2.;
m[1][3] = y + h/2.;
m[2][3] = d/2.;
m[0][0] = w/2.;
m[1][1] = h/2.;
m[2][2] = d/2.;
return m;
}
Matrix Util::getViewport(int width, int height, int depth) {
// With this matrix instead of scaling "by hand" the 3D vector to the screen's resolution
// we use the matrix to do the same calculation, scale by half the screen
// then move it to the center of the resulting 2D plane
float x = width / 8.;
float y = height / 8.;
float w = width * 3/4;
float h = height * 3/4;
float d = depth;
Matrix viewport = createViewportMatrix(x, y, w, h, d);
return viewport;
}
Matrix Util::getProjection(Vec3f& camera) {
// Then the 4D projection matrix just makes sure that when we go back to 3D
// the viewport/camera matrix will have the vector's Z axis scale back and forth
// as we please
// | 1 0 0 0 |
// | 0 1 0 0 |
// | 0 0 1 0 |
// | 0 0 -1./c 1 |
Matrix projection = Matrix::identity(4);
projection[3][2] = -1.f/camera.z;
return projection;
}
Matrix Util::generateModelView(Vec3f& eye, Vec3f& center, Vec3f& up) {
Vec3f z = (eye - center).normalize();
Vec3f x = (up ^ z).normalize();
Vec3f y = (z ^ x).normalize();
Matrix Minv = Matrix::identity(4);
Matrix Tr = Matrix::identity(4);
for (int i=0; i < 3; i++) {
Minv[0][i] = x[i];
Minv[1][i] = y[i];
Minv[2][i] = z[i];
Tr[i][3] = -eye[i];
}
return Minv * Tr;
}
Vec2f Util::calculateTriangleCentroid(Vec2i t0, Vec2i t1, Vec2i t2) {
float xc = (t0.x + t1.x + t2.x) / 3;//* 0.33333333333; // this could be faster than division
float yc = (t0.y + t1.y + t2.y) / 3;//* 0.33333333333;
return Vec2f(xc, yc);
}
void Util::drawVectorToPoint(std::vector<Vec2f> linePoints, Vec2f point, TGAImage &image, TGAColor color) {
for (int i = 0; i < linePoints.size(); i++) {
// TODO move drawLine to util
// drawLine(linePoints.at(i).x, linePoints.at(i).y, point.x, point.y, image, color);
}
}
void Util::rasterize2dDepthBuffer(Vec2i p0, Vec2i p1, TGAImage &image, TGAColor color, int yBuffer[]) {
if (p0.x>p1.x) {
std::swap(p0, p1);
}
for (int x=p0.x; x<=p1.x; x++) {
float t = (x-p0.x)/(float)(p1.x-p0.x);
int y = p0.y*(1.-t) + p1.y*t;
if (yBuffer[x]<y) {
yBuffer[x] = y;
image.set(x, 0, color);
}
}
}
char* Util::convertWStringToCharPtr(_In_ std::wstring input)
{
size_t outputSize = input.length() + 1; // +1 for null terminator
char * outputString = new char[outputSize];
size_t charsConverted = 0;
const wchar_t * inputW = input.c_str();
wcstombs_s(&charsConverted, outputString, outputSize, inputW, input.length());
return outputString;
}
Vec2f Util::linearInterpolate(Vec2f v0, Vec2f v1, float t) {
Vec2f v;
v.x = (1. - t) * v0.x + t * v1.x;
v.y = (1. - t) * v0.y + t * v1.y;
return v;
}
Vec3f Util::lerp(const Vec3f& start, const Vec3f& end, float t) {
Vec3f result;
result.x = start.x * (1. - t) + end.x * t;// start.x + t * (end.x - start.x);
result.y = start.y * (1. - t) + end.y * t;// start.y + t * (end.y - start.y);
return result;
}
Vec3f Util::interpolateVectors(const Vec3f& a, const Vec3f& b, const Vec3f& c, float t) {
Vec3f interpolatedPoint = lerp(lerp(a, b, t), lerp(b, c, t), t);
return interpolatedPoint;
}
Vec3f Util::interpolatePoint(Vec3f *trianglePoints, const Vec3f& p) {
// calculate barycentric coordinates
double alpha = ((trianglePoints[1].y - trianglePoints[2].y)*(p.x - trianglePoints[2].x) + (trianglePoints[2].x - trianglePoints[1].x)*(p.y - trianglePoints[2].y)) / ((trianglePoints[1].y - trianglePoints[2].y)*(trianglePoints[0].x - trianglePoints[2].x) + (trianglePoints[2].x - trianglePoints[1].x)*(trianglePoints[0].y - trianglePoints[2].y));
double beta = ((trianglePoints[2].y - trianglePoints[0].y)*(p.x - trianglePoints[2].x) + (trianglePoints[0].x - trianglePoints[2].x)*(p.y - trianglePoints[2].y)) / ((trianglePoints[1].y - trianglePoints[2].y)*(trianglePoints[0].x - trianglePoints[2].x) + (trianglePoints[2].x - trianglePoints[1].x)*(trianglePoints[0].y - trianglePoints[2].y));
double gamma = 1.0 - alpha - beta;
// interpolate point using barycentric coordinates
Vec3f result;
result.x = alpha * trianglePoints[0].x + beta * trianglePoints[1].x + gamma * trianglePoints[2].x;
result.y = alpha * trianglePoints[0].y + beta * trianglePoints[1].y + gamma * trianglePoints[2].y;
return result;
}
Vec3f Util::alternativeBarycentric(Vec3f triangleVertexA, Vec3f triangleVertexB, Vec3f triangleVertexC, Vec3f point) {
Vec3f v0 = triangleVertexB - triangleVertexA;
Vec3f v1 = triangleVertexC - triangleVertexA;
Vec3f v2 = point - triangleVertexA;
// Calculating the Dot products
float d00 = v0 * v0;
float d01 = v0 * v1;
float d11 = v1 * v1;
float d20 = v2 * v0;
float d21 = v2 * v1;
float denom = d00 * d11 - d01 * d01;
float v = (d11 * d20 - d01 * d21) / denom;
float w = (d00 * d21 - d01 * d20) / denom;
float u = 1.0f - v - w;
return Vec3f(u, v, w);
}
Vec3f Util::normalizeVector(Vec3f* pixel, float maxWidth, float maxHeight, float maxDepth, float limit) {
// zi = (xi – min(x)) / (max(x) – min(x)) * M, normalize between 0 and M
float x = ((pixel->x - 1.) / (maxWidth - 1.)) * limit;
float y = ((pixel->y - 1.) / (maxHeight - 1.)) * limit;
float z = ((pixel->z - 1.) / (maxDepth - 1.)) * limit;
return Vec3f(x, y, z);
}
Vec2i scaleVector(Vec2i vector) {
return vector * 4;
}
void Util::drawTriangleByLineSweeping(Vec2i t0, Vec2i t1, Vec2i t2, TGAImage &image, TGAColor color) {
// sort the vertices, t0, t1, t2 lower−to−upper
if (t0.y>t1.y) std::swap(t0, t1);
if (t0.y>t2.y) std::swap(t0, t2);
if (t1.y>t2.y) std::swap(t1, t2);
int totalHeight = t2.y - t0.y;
for (int i = 0; i < totalHeight; i++) {
bool secondHalf = i>t1.y-t0.y || t1.y==t0.y;
int segmentHeight = secondHalf ? t2.y-t1.y : t1.y-t0.y;
float alpha = (float)i/totalHeight;
float beta = (float)(i-(secondHalf ? t1.y-t0.y : 0)) / segmentHeight;
Vec2i A = t0 + (t2-t0) * alpha;
Vec2i B = secondHalf ? t1 + (t2-t1)*beta : t0 + (t1-t0)*beta;
if (A.x>B.x) {
std::swap(A, B);
}
for (int j=A.x; j<=B.x; j++) {
image.set(j, t0.y+i, color);
}
}
}
void Util::drawTriangleExamples(TGAImage &image) {
Vec2i t0[3] = { scaleVector(Vec2i(10, 70)), scaleVector(Vec2i(50, 160)), scaleVector(Vec2i(70, 80)) };
Vec2i t1[3] = { scaleVector(Vec2i(180, 50)), scaleVector(Vec2i(150, 1)), scaleVector(Vec2i(70, 180)) };
Vec2i t2[3] = { scaleVector(Vec2i(180, 150)), scaleVector(Vec2i(120, 160)), scaleVector(Vec2i(130, 180)) };
Util::drawTriangleByLineSweeping(t0[0], t0[1], t0[2], image, COLOR_RED);
Util::drawTriangleByLineSweeping(t1[0], t1[1], t1[2], image, COLOR_GREEN);
Util::drawTriangleByLineSweeping(t2[0], t2[1], t2[2], image, COLOR_WHITE);
}