-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
297 lines (239 loc) · 9.66 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#include <iostream>
#include <vector>
#include <cmath>
#include "tgaimage.h"
#include "model.h"
#include "geometry.h"
#include <shlwapi.h>
#include <vector>
#include "gl_util.h"
#include "shaders.h"
const int WIDTH = 800;
const int HEIGHT = 800;
const int DEPTH = 255;
const std::wstring OUTPUT_TGA_NAME = L"output.tga";
float *zBuffer = new float[WIDTH * HEIGHT];
Model *model = NULL;
TGAImage *diffuseTexture = new TGAImage();
Vec2i clamp(WIDTH - 1, HEIGHT - 1);
Vec3f eye(1,1, 3);
Vec3f center(0,0,0);
Vec3f up(0,1,0);
Vec3f camera(0,0,1000);
Vec3f lightDirection(0,0,-1);
Matrix viewport = Util::getViewport(WIDTH, HEIGHT, DEPTH);
Matrix modelView = Util::generateModelView(eye, center, up);
Matrix projection = Util::getProjection(camera);
std::vector<Vec2f> drawLine(int x0, int y0, int x1, int y1, TGAImage &image, TGAColor color) {
std::vector<Vec2f> linePoints;
bool steep = false;
if (std::abs(x0-x1) < std::abs(y0-y1)) { // if the line is steep, we transpose the image
std::swap(x0, y0);
std::swap(x1, y1);
steep = true;
}
if (x0 > x1) { // make it left−to−right
std::swap(x0, x1);
std::swap(y0, y1);
}
int dx = x1-x0;
int dy = y1-y0;
int derror2 = std::abs(dy)*2;
int error2 = 0;
int y = y0;
for (int x=x0; x <= x1; x++) {
if (steep) {
linePoints.push_back(Vec2f(y, x));
image.set(y, x, color); // if transposed, de−transpose
} else {
linePoints.push_back(Vec2f(x, y));
image.set(x, y, color);
}
error2 += derror2;
if (error2 > dx) {
y += (y1 > y0 ? 1 : -1);
error2 -= dx*2;
}
}
return linePoints;
}
Vec3f getBarycentricVector(Vec3f *triangleVertex, Vec3f P) {
// This calculation comes from a linear system of equations when considering u + v + w = 1 in barycentric coordinate theory
// The result is a vector [u, v, 1] that is perpendicular to (ACx, ABx, PAx) and (ACy, ABy, PAy)
// (ACx, ABx, PAx) cross product (ACy, ABy, PAy) should give us the normal vector, with a z value that must be 1
// if not, P doesn't belong in this triangle
Vec3f barycentricWeight = Vec3f(triangleVertex[2].x-triangleVertex[0].x, triangleVertex[1].x-triangleVertex[0].x, triangleVertex[0].x-P.x)^Vec3f(triangleVertex[2].y-triangleVertex[0].y, triangleVertex[1].y-triangleVertex[0].y, triangleVertex[0].y-P.y);
// triangleVertex and P has integer value as coordinates
// so abs(barycentricWeight[2]) < 1 means barycentricWeight[2] is 0, that means
// triangle is degenerate, in this case return something with negative coordinates
if (std::abs(barycentricWeight.z)<1) {
return Vec3f(-1,1,1);
}
return Vec3f(1.f-(barycentricWeight.x+barycentricWeight.y)/barycentricWeight.z, barycentricWeight.y/barycentricWeight.z, barycentricWeight.x/barycentricWeight.z);
}
void setScreenBoundaries(Vec3f *triangleVertex, Vec2i* bboxMin, Vec2i* bboxMax, TGAImage &image) {
bboxMin->u = image.get_width()-1;
bboxMin->v = image.get_height()-1;
bboxMax->u = 0;
bboxMax->v = 0;
for (int i=0; i<3; i++) {
bboxMin->x = std::max<int>(0, std::min<int>(bboxMin->x, triangleVertex[i].x));
bboxMin->y = std::max<int>(0, std::min<int>(bboxMin->y, triangleVertex[i].y));
bboxMax->x = std::min<int>(clamp.x, std::max<int>(bboxMax->x, triangleVertex[i].x));
bboxMax->y = std::min<int>(clamp.y, std::max<int>(bboxMax->y, triangleVertex[i].y));
}
}
Vec3f calculateCameraVertex(Vec3f& vector) {
// Let's transform the original 3D vector into 4D for homogeneous coordinates
// projected, scaled, and turn back to 3D
Matrix vector4D = Matrix::vectorToMatrix(vector);
GouraudShader shader(viewport, projection, modelView);
Vec3f result = Matrix::matrixToVector( viewport * projection * modelView * vector4D );
return result;
// This is the "flat" calculation method for the 3D vectors on a 2D plane without camera projection
// scaled to the resolution of the screen or image
// Since there is no transformation or rotation of any kind, the camera would be fixed on (0, 0, z)
// float x0 = (vector.x + 1.) * (float)WIDTH / 2.;
// float y0 = (vector.y + 1.) * (float)HEIGHT / 2.;
// float z0 = vector.z * (float)DEPTH;
// return Vec3f(x0, y0, z0);
}
void drawTriangleWithZBuffer(Vec3f *triangleVertex, TGAImage* diffuseTexture, Vec3f *uvTextureVertex, float *zbuffer, TGAImage &image, const float intensity, TGAColor color) {
Vec3f triangleVertexProjected[3];
for (int i = 0; i < 3; i++) {
triangleVertexProjected[i] = calculateCameraVertex(triangleVertex[i]);
}
Vec2i* bboxMin = new Vec2i();
Vec2i* bboxMax = new Vec2i();
setScreenBoundaries(triangleVertexProjected, bboxMin, bboxMax, image );
Vec3f P;
TGAColor randomColor(rand() % 255, rand() % 255, rand() % 255, 255);
for (P.x = bboxMin->x; P.x <= bboxMax->x; P.x++) {
for (P.y = bboxMin->y; P.y <= bboxMax->y; P.y++) {
Vec3f barycentricWeights = getBarycentricVector(triangleVertexProjected, P);
if (barycentricWeights.x < 0 || barycentricWeights.y < 0 || barycentricWeights.z < 0) {
// Barycentric point is out of the triangle's area, so not a valid coordinate
continue;
}
P.z = 0;
P.z += triangleVertexProjected[0].z * barycentricWeights.x;
P.z += triangleVertexProjected[1].z * barycentricWeights.y;
P.z += triangleVertexProjected[2].z * barycentricWeights.z;
if (zbuffer[int(P.x + P.y * WIDTH)] >= P.z) {
continue;
}
// This is a visible point, update the Z Buffer
zbuffer[int(P.x + P.y * WIDTH)] = P.z;
if (color == Util::COLOR_BACKGROUND_GRADIENT) {
Vec3f normalizedPixel = Util::normalizeVector(&P, WIDTH, HEIGHT, WIDTH + HEIGHT, 1);
image.set(P.x, P.y, TGAColor(255 * normalizedPixel.x, 255 * normalizedPixel.y, 0, 255));
} else if (color == Util::COLOR_RANDOM) {
image.set(P.x, P.y, randomColor);
} else if (color == Util::COLOR_TEXTURE) {
if (diffuseTexture == nullptr) {
image.set(P.x, P.y, Util::COLOR_WHITE * intensity);
continue;
}
// We use the calculated barycentricWeights from P across the original triangle
// And interpolate it through the texture triangle
Vec3f interpolatedPoint = uvTextureVertex[0] * barycentricWeights.x + uvTextureVertex[1] * barycentricWeights.y + uvTextureVertex[2] * barycentricWeights.z;
TGAColor sectionColor = diffuseTexture->get(
(float)diffuseTexture->get_width() * interpolatedPoint.x,
(float)diffuseTexture->get_height() * interpolatedPoint.y
);
image.set(P.x, P.y, sectionColor * intensity);
} else {
image.set(P.x, P.y, color * intensity);
}
}
}
delete bboxMax;
delete bboxMin;
}
void drawTriangleSurfaces(TGAImage &image, TGAImage* diffuseTexture, bool enableLight) {
for (int i=0; i < model->getTotalFaces(); i++) {
std::vector<std::vector<int>> face = model->getFaceByIndex(i);
Vec3f triangleVertex[3] = {};
Vec3f textureCoords[3];
for (int j=0; j < 3; j++) {
std::vector<int> faceVertex = face[j];
Vec3f vertex = model->getVertexByIndex(faceVertex[0]);
triangleVertex[j] = vertex;
textureCoords[j] = model->getTextureVertexByIndex(faceVertex[1]);
}
if (enableLight) {
Vec3f normalVector = (triangleVertex[2]-triangleVertex[0])^(triangleVertex[1]-triangleVertex[0]);
normalVector.normalize();
float intensity = normalVector * lightDirection;
if (intensity > 0) {
drawTriangleWithZBuffer(triangleVertex, diffuseTexture, textureCoords, zBuffer, image, intensity, Util::COLOR_TEXTURE);
}
} else {
drawTriangleWithZBuffer(triangleVertex, diffuseTexture, textureCoords, zBuffer, image, 1., Util::COLOR_BACKGROUND_GRADIENT);
}
}
}
void drawWireframeObjModel(TGAImage &image) {
float* wireframeZBuffer = new float[model->getTotalFaces() * 3];
for (int i=0; i < model->getTotalFaces(); i++) {
std::vector<std::vector<int>> face = model->getFaceByIndex(i);
for (int j=0; j < face.size(); j++) {
std::vector<int> faceVertexOrigin = face[j];
Vec3f v0 = model->getVertexByIndex(faceVertexOrigin[0]);
std::vector<int> faceVertexEnd = face[(j+1)%3];
Vec3f v1 = model->getVertexByIndex(faceVertexEnd[0]);
// TODO try at creating a z buffer for the wireframe, needs refinement
// float indexZ = 0.;
// indexZ += (v0.z + v1.z) / 2;
// if (wireframeZBuffer[int(i + j * 3)] >= indexZ) {
// continue;
// }
// wireframeZBuffer[int(i + j * 3)] = indexZ;
Vec3f r0 = calculateCameraVertex(v0);
Vec3f r1 = calculateCameraVertex(v1);
drawLine(r0.x, r0.y, r1.x, r1.y, image, Util::COLOR_WHITE);
}
}
delete[] wireframeZBuffer;
}
void drawObjModel(TGAImage &image, TGAImage* diffuseTexture, bool enableLight, bool enableWireframe) {
if (diffuseTexture != nullptr) {
drawTriangleSurfaces(image, diffuseTexture, enableLight);
}
if (enableWireframe) {
drawWireframeObjModel(image);
}
}
void openTGAOutput() {
SHELLEXECUTEINFOW ShExecInfo = {};
ShExecInfo.cbSize = sizeof(SHELLEXECUTEINFOW);
ShExecInfo.lpVerb = L"edit";
ShExecInfo.lpFile = OUTPUT_TGA_NAME.c_str();
ShExecInfo.nShow = SW_MAXIMIZE;
ShExecInfo.fMask = SEE_MASK_NOASYNC;
ShellExecuteEx(&ShExecInfo);
if (!ShellExecuteExW(&ShExecInfo)) {
// Error reported in GetLastError()
}
}
int main(int argc, char** argv) {
if (2 == argc) {
model = new Model(argv[1]);
} else {
model = new Model("obj/head.obj");
}
TGAImage image(WIDTH, HEIGHT, TGAImage::RGB);
diffuseTexture->read_tga_file("obj/head_diffuse.tga");
diffuseTexture->flip_vertically();
// drawTriangleExamples(image);
drawObjModel(image, diffuseTexture, true, false);
image.flip_vertically(); // Origin is at the left bottom corner of the image
char* outputFileName = Util::convertWStringToCharPtr(OUTPUT_TGA_NAME);
image.write_tga_file(outputFileName);
// modelDiffuseTexture->write_tga_file(outputFileName);
delete model;
delete outputFileName;
delete diffuseTexture;
openTGAOutput();
return 0;
}