Skip to content

A sequence-to-sequence framework of Keras-based generative attention mechanisms that humans can read.一个人类可以阅读的基于Keras的代注意力机制的序列到序列的框架/模型,或许你不用写复杂的代码,直接使用吧。

Notifications You must be signed in to change notification settings

user06039/Keras_Attention_Seq2Seq

 
 

Repository files navigation

Keras_Attention_Seq2Seq

In order to understand the essence of things.

A sequence-to-sequence framework of Keras-based generative attention mechanisms that humans can read.

一个人类可以阅读的基于Keras的代注意力机制的序列到序列的框架/模型。

Test pass

  • python 3.6
  • TensorFlow 1.12.1
  • keras 2.2.4
  • tqdm
  • json

if you nedd Evaluating model BLEU:

  • nltk

Fastest Using One: English-French translation using trained models

python run_seq2seq_model.py

Remember to set the operation mode to translation mode in run_seq2seq_model.py.

if __name__=='__main__':

    is_translation_mode = True

You will see...

Please input your sentences: california is usually quiet during march , and it is usually hot in june .
california is usually quiet during march , and it is usually hot in june .
chine est généralement agréable en mois , et il est généralement en en . . <EOS> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD>
Please input your sentences: china is usually dry during march , but it is nice in november .
china is usually dry during march , but it is nice in november .
chine est parfois agréable en mois , et il est généralement en en . . <EOS> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD>
Please input your sentences: exit()

Of course, you can also train your own model.Only you need is:

if __name__=='__main__':

    is_load_data_and_translate_from_scrach = True

Fastest Using Two: View input and output formats and use your own data

python attention_seq2seq_model_test.py

Then program automatically:

  1. Generating test data and dictionaries
  2. Train
  3. Sequence to Sequence Conversion

You only need to provide similar generated data and dictionaries to use the model directly.

Of course, the raw sequence data has to be processed by yourself.

If you don't want to process the data yourself, look down.

Framework for Sequence-to-Sequence without Coding

You may need to change the filename.

Preparation data

  1. A TXT-formatted original and target sequence file is required to be placed under the data folder.
  2. Each line of the file contains a sentence, and each line of the source sequence file and the target sequence file corresponds to each other.
  3. The elements of each sentence are separated by spaces, including punctuation marks.

You can refer to the sample file under the data folder.

For example:

small_vocab_en.txt

English sentences 0 to 2:
new jersey is sometimes quiet during autumn , and it is snowy in april .
the united states is usually chilly during july , and it is usually freezing in november .
california is usually quiet during march , and it is usually hot in june .

small_vocab_fr.txt

French sentences 0 to 2:
new jersey est parfois calme pendant l' automne , et il est neigeux en avril .
les états-unis est généralement froid en juillet , et il gèle habituellement en novembre .
california est généralement calme en mars , et il est généralement chaud en juin .

Preprocessing data files

modify data_process.py parameters: source_sequence_length, target_sequence_length...

python data_process.py

Automatically generate three files in the preparation_resources folder:

  • the original sequence dictionary file,
  • the target sequence dictionary file
  • the serialized data file.

For example:

-----English example-----

the united states is never beautiful during march , and it is usually relaxing in summer .
[124, 223, 125, 189, 219, 195, 50, 158, 58, 130, 215, 189, 44, 200, 162, 178, 18, 0, 0, 0]

-----French example-----

les états-unis est jamais belle en mars , et il est relaxant habituellement en été .
[220, 209, 329, 172, 53, 46, 210, 28, 255, 225, 329, 39, 299, 46, 5, 11, 1, 0, 0, 0, 0, 0, 0, 0, 0]
DATA shape:
X_shape:	 (137861, 20)  (data_numbers, source_sequence_length)
Y_shape:	 (137861, 25)  (data_numbers, target_sequence_length)
The size of source dict is : 229
The size of target dict is : 358

Traing Model

modify run_seq2seq_model.py parameters:

  • is_translation_mode = True
  • is_load_data_and_translate_from_scrach = False
  • is_load_data_trained_Word_Vector_and_train_model = False
python run_seq2seq_model.py

For example:

is_translation_mode = True

Using TensorFlow backend.
正在加载训练模型参数,模型参数如下:
{'model_name': 'attention_seq2seq_model_include_Pre_trained_Word_Vector', 'train_time': 1544089042.470125, 'model_weight_file_name': 'WEIGHT_attention_seq2seq_model_include_Pre_trained_Word_Vector.h5', 'trained_Word_Vector': '/home/b418/jupyter_workspace/B418_common/袁宵/data/Glove/glove.6B.100d.txt', 'source_sequence_lenth': 20, 'target_sequence_lenth': 25, 'source_vocab_length': 229, 'target_vocab_length': 358, 'encoder_Bi_LSTM_units_numbers': 32, 'decoder_LSTM_units_numbers': 128}
The size of source dict is : 229
The size of target dict is : 358
2018-12-06 19:53:06.278300: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
Please input your sentences: california is usually quiet during march , and it is usually hot in june .
california is usually quiet during march , and it is usually hot in june .
chine est généralement agréable en mois , et il est généralement en en . . <EOS> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD>
Please input your sentences: china is usually dry during march , but it is nice in november .
china is usually dry during march , but it is nice in november .
chine est parfois agréable en mois , et il est généralement en en . . <EOS> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD>
Please input your sentences: exit()

Evaluating model BLEU

python evaluating_model_BLEU.py
Using TensorFlow backend.
正在加载训练模型参数,模型参数如下:
{'model_name': 'attention_seq2seq_model_include_Pre_trained_Word_Vector', 'train_time': 1544089042.470125, 'model_weight_file_name': 'WEIGHT_attention_seq2seq_model_include_Pre_trained_Word_Vector.h5', 'trained_Word_Vector': '/home/b418/jupyter_workspace/B418_common/袁宵/data/Glove/glove.6B.100d.txt', 'source_sequence_lenth': 20, 'target_sequence_lenth': 25, 'source_vocab_length': 229, 'target_vocab_length': 358, 'encoder_Bi_LSTM_units_numbers': 32, 'decoder_LSTM_units_numbers': 128}
The size of source dict is : 229
The size of target dict is : 358
2018-12-06 19:29:26.976435: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
100%|███████████████████████████████████████████| 28/28 [07:46<00:00, 14.43s/it]
  0%|                                                | 0/137861 [00:00<?, ?it/s]/home/b418/anaconda3/envs/yuanxiao/lib/python3.6/site-packages/nltk/translate/bleu_score.py:490: UserWarning: 
Corpus/Sentence contains 0 counts of 2-gram overlaps.
BLEU scores might be undesirable; use SmoothingFunction().
  warnings.warn(_msg)
100%|██████████████████████████████████| 137861/137861 [05:11<00:00, 442.82it/s]
The BLEU score on our corpus is about 0.6051313546590134

Explain

To Do

  • change code for no need input "Manual Initialization of LSTM Initial State at Decoder"
  • add "Forced learning by teachers"
  • add "Beam search"

About

A sequence-to-sequence framework of Keras-based generative attention mechanisms that humans can read.一个人类可以阅读的基于Keras的代注意力机制的序列到序列的框架/模型,或许你不用写复杂的代码,直接使用吧。

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%