Skip to content
/ DRGO Public

The official implementation of Distributionally Robust Graph Out-of-Distribution Recommendation via Diffusion Model

Notifications You must be signed in to change notification settings

user683/DRGO

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Distributionally Robust Graph Out-of-Distribution Recommendation via Diffusion Model

  • Model framework

png

This paper designs a Distributionally Robust Graph model for OOD recommendation (DRGO). Specifically, our method first employs a simple and effective diffusion paradigm to alleivate the noisy effect in the latent space. Additionally, an entropy regularization term is introduced in the DRO objective function to avoid extreme sample weights in the worst-case distribution. At last, we provide a theoretical proof of the generalization error bound of DRGO as well as a theoretical analysis of how our approach mitigates noisy sample effects, which helps to better understand the proposed framework from a theoretical perspective.

Requirements

  • torch==2.1.1+cu121
  • torch_geometric==2.5.3
  • torchaudio==2.1.1+cu121
  • torchvision==0.16.1+cu121
  • tornado==6.4.1
  • dgl==2.0.0+cu121

Code Structures

.
├── dataset
├── logs
├── modules
│   ├── diffusion_model.py
│   ├── KMeans_fun.py
│   ├── LightGCN.py
│   ├── MLP_model.py
│   ├── SDE.py
│   └── Vgae.py
├── utils
│   ├── dataloader.py
│   ├── evaluation.py
│   ├── functions.py
│   ├── logger.py
│   └── loss_functions.py
├── main.py
└── parse.py

Run Code

Run following python code (available dataset: "Food", "Kuairec") with default hyperparameters to reproduce our results.

  • Food
python main.py --dataset Food --lr 0.001 --batch_size 4096 --epoch 20 --dims 64
  • Kuairec
python main.py --dataset Food --lr 0.0001 --batch_size 4096 --epoch 20 --dims 64

Dataset

Dataset #Users #Items #Interactions Density
Food 7,809 6,309 216,407 4.4 × 10⁻³
KuaiRec 7,175 10,611 1,153,797 1.5 × 10⁻³
Yelp2018 8,090 13,878 398,216 3.5 × 10⁻³
Douban 8,735 13,143 354,933 3.1 × 10⁻³

About

The official implementation of Distributionally Robust Graph Out-of-Distribution Recommendation via Diffusion Model

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages