The purpose of this code and data is to enable reproduction (see Reproducing the manuscript) and facilitate extension of the computational results associated with Ref. [1] (see Citing This Work).
The container used in this work can be obtained using
docker pull rfd1/understanding-btcs:final
This requires Docker.
For users without previous Docker experience, we recommend the following steps
-
Install Docker Desktop.
-
Install Visual Studio Code.
-
Start the Docker Desktop application.
-
Open Visual Studio Code and install the Dev Containers extension.
-
With the Dev Containers extension installed, you will see the (green) new status bar at the bottom left
- Click on the green status bar and then open this folder in a container.
A pdf version of the manual can be found at doc/manual.pdf.
To cite the manuscript, use Ref. [1]. To cite the software or data generated, use Ref. [2].
-
DeJaco, R. F.; Kearsley, A. J. Understanding Fast Adsorption in Single-Solute Breakthrough Curves, Communications in Nonlinear Science and Numerical Simulation, Volume 131, 2024, 107794, ISSN 1007-5704, doi: 10.1016/j.cnsns.2023.107794.
-
De Jaco, R. F. Sofware and Data Associated with "DeJaco, R. F.; Kearsley, A. J. Understanding Fast Adsorption in Breakthrough-curve Measurements." National Institute of Standards and Technology, 2023, doi: 10.18434/mds2-3103.
Performing the calculations via
bash calc_figureS1.sh
generates the output files
Plotting the results via
python3 plot_figureS1.py
generates the figure out/figureS1.png.
Performing the calculations via
bash calc_figureS2.sh
generates the output files
- spatial-refinement-kappa=-0.8.csv
- spatial-refinement-kappa=-0.4.csv
- spatial-refinement-kappa=0.csv
- spatial-refinement-kappa=1.csv
- spatial-refinement-kappa=8.csv
- spatial-refinement-kappa=64.csv
- spatial-refinement-kappa=256.csv
- temporal-refinement-kappa=-0.8.csv
- temporal-refinement-kappa=-0.4.csv
- temporal-refinement-kappa=0.csv
- temporal-refinement-kappa=1.csv
- temporal-refinement-kappa=8.csv
- temporal-refinement-kappa=64.csv
- temporal-refinement-kappa=256.csv
Plotting the results via
python3 plot_figureS2.py
uses these output files to generate the figure out/figureS2.png.
Performing the calculations via
bash calc_figure3_figure4_figureS3.sh
generates the following output files:
- rarefaction-0.02.dat
- rarefaction-0.04.dat
- rarefaction-0.08.dat
- rarefaction-0.16.dat
- rarefaction-0.32.dat
- rarefaction-0.64.dat
- shock-0.02.dat
- shock-0.04.dat
- shock-0.08.dat
- shock-0.16.dat
- shock-0.32.dat
- shock-0.64.dat
- rarefaction--0.1-0.02.dat
- rarefaction--0.2-0.02.dat
- rarefaction--0.4-0.02.dat
- rarefaction--0.8-0.02.dat
- rarefaction--0.1-0.04.dat
- rarefaction--0.2-0.04.dat
- rarefaction--0.4-0.04.dat
- rarefaction--0.8-0.04.dat
- rarefaction--0.1-0.08.dat
- rarefaction--0.2-0.08.dat
- rarefaction--0.4-0.08.dat
- rarefaction--0.8-0.08.dat
- rarefaction--0.1-0.16.dat
- rarefaction--0.2-0.16.dat
- rarefaction--0.4-0.16.dat
- rarefaction--0.8-0.16.dat
- rarefaction--0.1-0.32.dat
- rarefaction--0.2-0.32.dat
- rarefaction--0.4-0.32.dat
- rarefaction--0.8-0.32.dat
- rarefaction--0.1-0.64.dat
- rarefaction--0.2-0.64.dat
- rarefaction--0.4-0.64.dat
- rarefaction--0.8-0.64.dat
These figures can be generated by
python3 plot_figure3_figureS3.py && python3 plot_figure4.py
and their output .png
files found in the out/
folder as before.
Performing the calculations via
bash calc_figure5.sh
generates the output files that can be found in folders
The figure is generated via
python3 plot_figure5.py