Skip to content

Commit

Permalink
add source for adversarial
Browse files Browse the repository at this point in the history
  • Loading branch information
zzh1996 committed Oct 18, 2018
1 parent f4ee7ab commit 9536a59
Show file tree
Hide file tree
Showing 18 changed files with 494 additions and 0 deletions.
4 changes: 4 additions & 0 deletions official/adversarial/src/.gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
.vscode/
__pycache__/
data/
sample.png
11 changes: 11 additions & 0 deletions official/adversarial/src/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
FROM ubuntu:artful
MAINTAINER SIYUAN-ZHUANG USTC-1411
ENV LC_ALL=C.UTF-8

RUN apt-get update
RUN apt-get install --yes python3.6 python3.6-dev python3-pip python3-openssl
COPY ./webapp /webapp
WORKDIR /webapp
RUN pip3 install -r requirements.txt
ENTRYPOINT ["python3"]
CMD ["webapp.py"]
7 changes: 7 additions & 0 deletions official/adversarial/src/docker-compose.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
version: '3'
services:
web:
build: .
ports:
- "12004:5000"
restart: always
11 changes: 11 additions & 0 deletions official/adversarial/src/solution/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
FROM ubuntu:artful
MAINTAINER SIYUAN-ZHUANG USTC-1411
ENV LC_ALL=C.UTF-8

RUN apt-get update
RUN apt-get install --yes python3.6 python3.6-dev python3-pip python3-openssl
COPY . /solution
WORKDIR /solution
RUN pip3 install -r requirements.txt
ENTRYPOINT ["python3"]
CMD ["solution.py"]
10 changes: 10 additions & 0 deletions official/adversarial/src/solution/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
这个目录内部包括参考答案 `solution.py` 和其它依赖文件。
目录同时包含了 `Dockerfile`, 用户可以用以下方式检验答案:

```bash
docker build -t solution .
```

```bash
docker run -it solution
```
132 changes: 132 additions & 0 deletions official/adversarial/src/solution/main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
"""
mmmummm mmmm mmsmm mmmm mmmmmm mtm mmcmm mmmmmmmmmmmmm
# m" "m # "# #" " # m" " # "# # #
# # # #mmm#" "#mmm #mmmmm # #mmmm" #mmmmm #
# # # # "# # # # "m # #
# #mm# # "mmm#" #mmmmm "mmm" # " #mmmmm #
"""


from __future__ import print_function
import argparse
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

from torchvision import datasets, transforms


class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=7)
self.bn1 = nn.BatchNorm2d(10)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.bn2 = nn.BatchNorm2d(20)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.bn3 = nn.BatchNorm1d(50)
self.fc2 = nn.Linear(50, 10)

def forward(self, x):
x = F.relu(F.max_pool2d(self.bn1(self.conv1(x)), 2))
x = F.relu(F.max_pool2d(self.bn2(self.conv2(x)), 2))
x = self.conv2_drop(x)
x = x.view(-1, 320)
x = F.relu(self.bn3(self.fc1(x)))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)


def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))

def test(args, model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()

test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))

def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=2, metavar='N',
help='number of epochs to train (default: 2)')
parser.add_argument('--lr', type=float, default=0.02, metavar='LR',
help='learning rate (default: 0.02)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()

torch.manual_seed(args.seed)

device = torch.device("cuda" if use_cuda else "cpu")

kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=True, download=True,
transform=transforms.Compose([
transforms.Resize((30, 30)),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)),
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=False, transform=transforms.Compose([
transforms.Resize((30, 30)),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)),
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)


model = Net().to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-5)

for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
test(args, model, device, test_loader)

with open('model.pth', 'wb') as f:
torch.save(model.to(torch.device("cpu")).state_dict(), f)


if __name__ == '__main__':
assert not os.path.exists('model.pth'), "There already exists a model file. DO NOT OVERRIDE IT UNLESS YOU KNOW WHAT YOU ARE DOING."
main()
Binary file added official/adversarial/src/solution/model.pth
Binary file not shown.
23 changes: 23 additions & 0 deletions official/adversarial/src/solution/pick.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
# 这个文件和答案无关,只是展示获取 target.png 的方式
from __future__ import print_function
import torch
from torchvision import datasets, transforms
import numpy as np
from PIL import Image

test_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=False, transform=transforms.Compose([
transforms.Resize((30, 30)),
transforms.ToTensor(),
# transforms.Normalize((0.1307,), (0.3081,)),
])), batch_size=1, shuffle=False)

for i, (data, target) in enumerate(test_loader):
if i != 534:
continue
else:
data = (np.array(data).reshape(30, 30) * 255).astype(np.uint8)
img = Image.fromarray(data, mode='L')
img = img.resize((600, 600), resample=Image.BILINEAR)
img.save('target.png')
break
2 changes: 2 additions & 0 deletions official/adversarial/src/solution/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
http://download.pytorch.org/whl/cpu/torch-0.4.1-cp36-cp36m-linux_x86_64.whl
torchvision==0.2.1
Binary file added official/adversarial/src/solution/solution.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
85 changes: 85 additions & 0 deletions official/adversarial/src/solution/solution.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
"""
mmmummm mmmm mmsmm mmmm mmmmmm mtm mmcmm mmmmmmmmmmmmm
# m" "m # "# #" " # m" " # "# # #
# # # #mmm#" "#mmm #mmmmm # #mmmm" #mmmmm #
# # # # "# # # # "m # #
# #mm# # "mmm#" #mmmmm "mmm" # " #mmmmm #
"""

from __future__ import print_function, division
import torch
import numpy as np
from PIL import Image
import torch.nn.functional as F

from main import Net

def solve():
model = load_model()
image = Image.open('target.png')
image = convert2tensor(image)
inputs = preprocess_image(image)
label = torch.tensor([6], dtype=torch.long)

# A solution for part 1
inputs.requires_grad = True
x = (inputs - 0.1307) / 0.3081 # scale mean & std
output = model(x)
loss = F.nll_loss(output, label)
loss.backward()
x_grad = torch.sign(inputs.grad.data)
epsilon = 0.18
inputs = torch.clamp(inputs + epsilon * x_grad, 0, 1)

inputs = inputs.reshape(30, 30)

for i in range(30):
for j in range(30):
image[int((i + 0.5) * 20), int((j + 0.5) * 20)] = inputs[i, j]

return image

def convert2tensor(image):
return torch.from_numpy(np.array(image).astype('f') / 255.)

def convert2image(arr):
return Image.fromarray((arr.detach().numpy() * 255).astype(np.uint8), mode='L')

def preprocess_image(arr):
image = convert2image(arr)
image = image.resize((30, 30), resample=Image.NEAREST)
return convert2tensor(image).reshape(1, 1, 30 ,30)

def load_model():
model = Net()
model.load_state_dict(torch.load('model.pth'))
model.eval()
return model

def check():
model = load_model()

target = convert2tensor(Image.open('target.png'))
sample = convert2tensor(Image.open('sample.png'))
assert torch.sum(target != sample) < 600 * 600 * 0.002, 'Input hacking is detected! Game over.'
assert F.l1_loss(target, sample) < 0.001, 'Input hacking is detected! Game over.'
assert (torch.max(torch.abs(target - sample))) < 0.2, 'Input hacking is detected! Game over.'
target = preprocess_image(target)
sample = preprocess_image(sample)
# A solution for part 2
target = (target - 0.1307) / 0.3081
sample = (sample - 0.1307) / 0.3081

truth = torch.argmax(model(target))
hack = torch.argmax(model(sample))
assert int(truth) != int(hack), 'Fail to hack. Game over.'
print('Cong! You win!!!')


if __name__ == '__main__':
output = solve()
convert2image(output).save('sample.png')
# You have to pass this check!
check()
Binary file added official/adversarial/src/solution/target.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
1 change: 1 addition & 0 deletions official/adversarial/src/webapp/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
这个目录内部包括网页交互相关的代码。
Loading

0 comments on commit 9536a59

Please sign in to comment.