Skip to content

batch image correlation 1 connections #4

batch image correlation 1 connections

batch image correlation 1 connections #4

# Batch process many image pairs
name: batch_image_correlation
run-name: batch image correlation ${{ inputs.npairs }} connections
on:
workflow_dispatch:
inputs:
cloud_cover:
type: string
required: true
description: percent cloud cover allowed in images (0-100)
default: '10'
start_month:
type: choice
required: true
description: first month of year to search for images
default: '6'
options: ['1','2','3','4','5','6','7','8','9','10','11','12']
stop_month:
type: choice
required: true
description: last month of year to search for images
default: '9'
options: ['1','2','3','4','5','6','7','8','9','10','11','12']
npairs:
type: choice
required: true
description: number of pairs per image
default: '1'
options: ['3','2','1']
# Must duplicate inputs for workflow_call (https://github.com/orgs/community/discussions/39357)
workflow_call:
inputs:
cloud_cover:
type: string
required: true
start_month:
type: string
required: true
stop_month:
type: string
required: true
npairs:
type: string
required: true
jobs:
# The output of this job is a JSON mapping for a matrix job
S2_search:
runs-on: ubuntu-latest
outputs:
BURST_IDS: ${{ steps.S2_search.outputs.IMAGE_DATES }}
MATRIX: ${{ steps.S2_search.outputs.MATRIX_PARAMS_COMBINATIONS }}
defaults:
run:
shell: bash -el {0}
steps:
- name: Checkout Repository
uses: actions/checkout@v4
- name: Install Conda environment with Micromamba
uses: mamba-org/setup-micromamba@v1
with:
cache-environment: true
environment-file: glacier_image_correlation/environment.yml
# https://words.yuvi.in/post/python-in-github-actions/
- name: Search aws for S2 imagery
id: S2_search
shell: bash -el -c "python -u {0}"
run: |
import xarray as xr
import os
import pystac
import pystac_client
import stackstac
from dask.distributed import Client
import dask
import json
import pandas as pd
# GDAL environment variables for better performance
os.environ['AWS_REGION']='us-west-2'
os.environ['GDAL_DISABLE_READDIR_ON_OPEN']='EMPTY_DIR'
os.environ['AWS_NO_SIGN_REQUEST']='YES'
# hardcode bbox for now
bbox = {
"type": "Polygon",
"coordinates": [
[[75.42382800808971,36.41082887114753],
[75.19442677164156,36.41082887114753],
[75.19442677164156,36.201076360872946],
[75.42382800808971,36.201076360872946],
[75.42382800808971,36.41082887114753]]]
}
# Use the api from element84 to query the data
URL = "https://earth-search.aws.element84.com/v1"
catalog = pystac_client.Client.open(URL)
search = catalog.search(
collections=["sentinel-2-l2a"],
intersects=bbox,
query={"eo:cloud_cover": {"lt": ${{ inputs.cloud_cover }}}}
)
# Check how many items were returned
items = search.item_collection()
print(f"Returned {len(items)} Items")
# create xarray dataset without loading data
sentinel2_stack = stackstac.stack(items)
# filter to specified month range
sentinel2_stack_snowoff = sentinel2_stack.where((sentinel2_stack.time.dt.month >= ${{ inputs.start_month }}) & (sentinel2_stack.time.dt.month <= ${{ inputs.stop_month }}), drop=True)
# select first image of each month
period_index = pd.PeriodIndex(sentinel2_stack_snowoff['time'].values, freq='M')
first_image_indices = sentinel2_stack_snowoff.groupby('year_month').apply(lambda x: x.isel(time=0))
product_names = first_image_indices['s2:product_uri'].values.tolist()
print('\n'.join(product_names))
# Create Matrix Job Mapping (JSON Array)
pairs = []
for r in range(len(product_names) - ${{ inputs.npairs }}):
for s in range(1, ${{ inputs.npairs }} + 1 ):
img1_product_name = product_names[r]
img2_product_name = product_names[r+s]
shortname = f'{img1_product_name[11:19]}_{img2_product_name[11:19]}'
pairs.append({'img1_product_name': img1_product_name, 'img2_product_name': img2_product_name, 'name':shortname})
matrixJSON = f'{{"include":{json.dumps(pairs)}}}'
print(f'number of image pairs: {len(pairs)}')
with open(os.environ['GITHUB_OUTPUT'], 'a') as f:
print(f'IMAGE_DATES={product_names}', file=f)
print(f'MATRIX_PARAMS_COMBINATIONS={matrixJSON}', file=f)
# A matrix job that calls a reuseable workflow
autoRIFT:
needs: S2_search
strategy:
fail-fast: false
matrix: ${{ fromJson(needs.S2_search.outputs.MATRIX) }}
name: ${{ matrix.name }}
uses: ./.github/workflows/image_correlation_pair.yml
with:
img1_date: ${{ matrix.img1_product_name }}
img2_date: ${{ matrix.img2_product_name }}
workflow_name: ${{ matrix.name }}