-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathrun_depth.py
80 lines (63 loc) · 2.79 KB
/
run_depth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import torch
from utils.loading_utils import load_model, get_device
from utils.event_readers import VoxelGridDataset
from os.path import join, basename
import numpy as np
import json
import argparse
import shutil
import os
from depth_prediction import DepthEstimator
from options.inference_options import set_depth_inference_options
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Evaluating a trained network')
parser.add_argument('-c', '--path_to_model', required=True, type=str,
help='path to model weights')
parser.add_argument('-i', '--input_folder', default=None, type=str,
help="name of the folder containing the voxel grids")
parser.add_argument('--start_time', default=0.0, type=float)
parser.add_argument('--stop_time', default=0.0, type=float)
set_depth_inference_options(parser)
args = parser.parse_args()
print_every_n = 50
# Load model to device
model = load_model(args.path_to_model)
device = get_device(args.use_gpu)
model = model.to(device)
model.eval()
base_folder = os.path.dirname(args.input_folder)
event_folder = os.path.basename(args.input_folder)
# hack to get the image size: create a dummy dataset,
# grab the first data item and read the required info
dummy_dataset = VoxelGridDataset(base_folder,
event_folder,
args.start_time,
args.stop_time,
transform=None)
data = dummy_dataset[0]
_, height, width = data['events'].shape
height = height - args.low_border_crop
estimator = DepthEstimator(model, height, width, model.num_bins, args)
events_dataset = VoxelGridDataset(base_folder=base_folder,
event_folder = event_folder,
start_time=args.start_time,
stop_time=args.stop_time,
transform=None)
output_dir = args.output_folder
dataset_name = args.dataset_name
print('Processing {}'.format(dataset_name), end=': ')
N = len(events_dataset)
if output_dir is not None:
shutil.copyfile(join(args.input_folder, 'timestamps.txt'),
join(output_dir, dataset_name, 'timestamps.txt'))
shutil.copyfile(join(args.input_folder, 'boundary_timestamps.txt'),
join(output_dir, dataset_name, 'boundary_timestamps.txt'))
idx = 0
while idx < N:
if idx % print_every_n == 0:
print('{} / {}'.format(idx, N))
data = events_dataset[idx]
event_tensor = data['events'][:,:height,:]
estimator.update_reconstruction(event_tensor, idx)
idx += 1