-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
695 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
import argparse | ||
import json | ||
import random | ||
from os import path as osp | ||
|
||
import ipdb | ||
import matplotlib.pyplot as plt | ||
import networkx as nx | ||
import numpy as np | ||
import pandas as pd | ||
import torch | ||
import torch.nn.functional as F | ||
import yaml | ||
from tqdm import tqdm | ||
|
||
import torch_geometric | ||
from hetsage.model import Model | ||
from hetsage.utils import init_random | ||
|
||
|
||
def zero_grad(model): | ||
for p in model.parameters(): | ||
p.grad = None | ||
|
||
|
||
def run_iter(model, optimizer, device): | ||
metrics = {} | ||
loss, acc = _run_iter(model, model.tng_loader, optimizer, device=device) | ||
metrics['tng-loss'] = loss | ||
metrics['tng-acc'] = acc | ||
|
||
with torch.no_grad(): | ||
# loss, acc = _run_iter(model, model.tng_loader, device=device) | ||
# metrics['tng2-loss'] = loss | ||
# metrics['tng2-acc'] = acc | ||
loss, acc = _run_iter(model, model.val_loader, device=device) | ||
metrics['val-loss'] = loss | ||
metrics['val-acc'] = acc | ||
|
||
return metrics | ||
|
||
|
||
def _run_iter(model, data_loader, optimizer=None, device='cpu'): | ||
if optimizer is not None: | ||
model.train() | ||
else: | ||
model.eval() | ||
|
||
total_loss = 0 | ||
total_correct = 0 | ||
total_nodes = 0 | ||
i = 0 | ||
for batch_size, n_id, adjs in tqdm(data_loader): | ||
# import ipdb; ipdb.set_trace() | ||
# `adjs` holds a list of `(edge_index, e_id, size)` tuples. | ||
if isinstance(adjs, torch_geometric.data.sampler.Adj): | ||
adjs = [adjs] | ||
adjs = [adj.to(device) for adj in adjs] | ||
n_id = n_id.to(device) | ||
targets = model.get_targets(n_id[:batch_size, 0]) | ||
# targets = model.get_targets(n_id[torch.nonzero(n_id[:, 1] == 1, | ||
# as_tuple=False).squeeze()][:, 0]) | ||
if optimizer is not None: | ||
# zero_grad(model) | ||
optimizer.zero_grad() | ||
out = model(n_id, adjs) | ||
loss = F.nll_loss(F.log_softmax(out, dim=-1), targets) | ||
if optimizer is not None: | ||
loss.backward() | ||
optimizer.step() | ||
|
||
total_loss += float(loss.detach()) * batch_size | ||
|
||
# import ipdb; ipdb.set_trace() | ||
# out_np = out.cpu().to_numpy() | ||
y_pred = torch.argmax(out.detach(), dim=-1) | ||
# if i >= 0: | ||
# print(i) | ||
# print(n_id[:batch_size, 0]) | ||
# print(adjs[0].edge_index.t()) | ||
# print(out) | ||
# print(targets) | ||
# print(y_pred) | ||
# i += 1 | ||
total_correct += float((y_pred == targets).sum()) | ||
total_nodes += batch_size | ||
|
||
loss = total_loss / total_nodes | ||
approx_acc = total_correct / total_nodes | ||
|
||
return loss, approx_acc | ||
|
||
|
||
# @torch.no_grad() | ||
# def test(): | ||
# model.eval() | ||
|
||
# out = model.inference(x) | ||
|
||
# y_true = y.cpu().unsqueeze(-1) | ||
# y_pred = out.argmax(dim=-1, keepdim=True) | ||
|
||
# results = [] | ||
# for mask in [data.train_mask, data.val_mask, data.test_mask]: | ||
# results += [int(y_pred[mask].eq(y_true[mask]).sum()) / int(mask.sum())] | ||
|
||
# return results | ||
|
||
|
||
def main(args): | ||
init_random() | ||
# load graph | ||
g = nx.readwrite.gml.read_gml(args.gml) | ||
|
||
if args.use_gpu: | ||
device = torch.device('cuda:0') | ||
else: | ||
device = torch.device('cpu') | ||
|
||
model = Model(g, args.target, device=device) | ||
model = model.to(device) | ||
optimizer = torch.optim.Adam(model.parameters(), lr=0.005) | ||
|
||
model.train() | ||
for epoch in range(1, 1 + args.max_epochs): | ||
metrics = run_iter(model, optimizer, device=device) | ||
tng_loss = metrics['tng-loss'] | ||
tng_acc = metrics['tng-acc'] | ||
# tng2_loss = metrics['tng2-loss'] | ||
# tng2_acc = metrics['tng2-acc'] | ||
val_loss = metrics['val-loss'] | ||
val_acc = metrics['val-acc'] | ||
msg = '' | ||
msg += f'Epoch {epoch:02d}, ' | ||
msg += f'Tng loss: {tng_loss:.4f}, ' | ||
msg += f'Tng acc: {100*tng_acc:.2f}, ' | ||
# msg += f'Tng2 loss: {tng2_loss:.4f}, ' | ||
# msg += f'Tng2 acc: {100*tng2_acc:.2f}, ' | ||
msg += f'Val loss: {val_loss:.4f}, ' | ||
msg += f'Val acc: {100*val_acc:.2f}' | ||
print(msg) | ||
# train_acc, val_acc, test_acc = test() | ||
# print(f'Train: {train_acc:.4f}, Val: {val_acc:.4f}, ' f'Test: {test_acc:.4f}') | ||
|
||
|
||
if __name__ == '__main__': | ||
PARSER = argparse.ArgumentParser() | ||
PARSER.add_argument('--gml') | ||
PARSER.add_argument('--target') | ||
PARSER.add_argument('--use-gpu', action='store_true') | ||
PARSER.add_argument('--max-epochs', type=int) | ||
|
||
ARGS = PARSER.parse_args() | ||
main(ARGS) |
Empty file.
Oops, something went wrong.