Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improvements to Dummy Dataset #34

Merged
merged 6 commits into from
Mar 8, 2024
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
Updated dummy dataset
  • Loading branch information
Nikhil Shenoy committed Feb 9, 2024
commit 4bfb1c1d0ed990b5163b31732d78d449a9697cfe
67 changes: 38 additions & 29 deletions src/openqdc/datasets/dummy.py
Original file line number Diff line number Diff line change
@@ -1,15 +1,12 @@
import numpy as np # noqa
from numpy import array
from sklearn.utils import Bunch
import numpy as np

from openqdc.datasets.base import BaseDataset
from openqdc.utils.atomization_energies import IsolatedAtomEnergyFactory
from openqdc.utils.constants import NOT_DEFINED


class Dummy(BaseDataset):
"""
Dummy dataset
Dummy dataset for testing.
"""

__name__ = "dummy"
Expand All @@ -30,32 +27,60 @@ def _stats(self):
return {
"formation": {
"energy": {
"mean": array([[-12.94348027, -9.83037297]]),
"std": array([[4.39971409, 3.3574188]]),
"mean": np.array([[-12.94348027, -9.83037297]]),
"std": np.array([[4.39971409, 3.3574188]]),
},
"forces": NOT_DEFINED,
},
"total": {
"energy": {
"mean": array([[-89.44242, -1740.5336]]),
"std": array([[29.599571, 791.48663]]),
"mean": np.array([[-89.44242, -1740.5336]]),
"std": np.array([[29.599571, 791.48663]]),
},
"forces": NOT_DEFINED,
},
}

def __init__(self, energy_unit=None, distance_unit=None, cache_dir=None) -> None:
def __init__(
self,
energy_unit=None,
distance_unit=None,
cache_dir=None,
) -> None:
try:
super().__init__(energy_unit=energy_unit, distance_unit=distance_unit, cache_dir=cache_dir)

except: # noqa
pass
self._set_isolated_atom_energies()
self.setup_dummy()

def setup_dummy(self):
self._n_atoms = np.array([np.random.randint(1, 100) for _ in range(self.__len__())])
self.__average_nb_atoms__ = self._n_atoms.mean()
n_atoms = np.array([np.random.randint(1, 100) for _ in range(len(self))])
position_idx_range = np.concatenate([[0], np.cumsum(n_atoms)]).repeat(2)[1:-1].reshape(-1, 2)
atomic_inputs = np.concatenate([np.concatenate([
# z, c, x, y, z
np.random.randint(1, 100, size=(size, 1)),
np.random.randint(-1, 2, size=(size, 1)),
np.random.randn(size, 3)
], axis=1) for size in n_atoms], axis=0) # (sum(n_atoms), 5)
name=[f'dummy_{i}' for i in range(len(self))]
subset=["dummy" for i in range(len(self))]
energies = np.random.rand(len(self), len(self.__energy_methods__))
forces = np.concatenate([
np.random.randn(size, 3, len(self.__force_methods__)) * 100
for size in n_atoms
])
self.data = dict(
n_atoms=n_atoms,
position_idx_range=position_idx_range,
name=name,
atomic_inputs=atomic_inputs,
subset=subset,
energies=energies,
forces=forces,
)
self.__average_nb_atoms__ = self.data["n_atoms"].mean()

def is_preprocessed(self):
return True
Expand All @@ -65,19 +90,3 @@ def read_raw_entries(self):

def __len__(self):
return 9999

def __getitem__(self, idx: int):
shift = IsolatedAtomEnergyFactory.max_charge
size = self._n_atoms[idx]
z = np.random.randint(1, 100, size)
c = np.random.randint(-1, 2, size)
return Bunch(
positions=np.random.rand(size, 3) * 10,
atomic_numbers=z,
charges=c,
e0=self.__isolated_atom_energies__[..., z, c + shift].T,
energies=np.random.randn(len(self.__energy_methods__)),
name="dummy_{}".format(idx),
subset="dummy",
forces=(np.random.randn(size, 3, len(self.__force_methods__)) * 100),
)