-
Notifications
You must be signed in to change notification settings - Fork 400
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'read_rr_graph_run_flat' of https://github.com/verilog-t…
…o-routing/vtr-verilog-to-routing into read_rr_graph_run_flat
- Loading branch information
Showing
3 changed files
with
291 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,11 +1,13 @@ | ||
prettytable | ||
lxml | ||
psutil | ||
|
||
pandas | ||
numpy | ||
scipy | ||
# Python linter and formatter | ||
click==8.0.2 # Our version of black needs an older version of click (https://stackoverflow.com/questions/71673404/importerror-cannot-import-name-unicodefun-from-click) | ||
black==21.4b0 | ||
pylint==2.7.4 | ||
|
||
# Surelog | ||
orderedmultidict | ||
orderedmultidict |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
A script used to run tuning experiments with multiple parameters. | ||
|
||
Steps to use: | ||
============= | ||
1) edit the first section of the script by setting `PARAMS_DICT` dictionary to the parameters that you want to sweep and the corresponding values that you want to try. If you want the resulting spreadheet to include specific metrics, set `KEEP_METRICS_ONLY` variable to `True` and the metrics that you care about in `parsed_metrics`. If you want the full parsed result sheet, set `KEEP_METRICS_ONLY` to `False` | ||
|
||
2) run the script as follows: | ||
''' | ||
python control_runs.py --generate <path_to_task_to_run> | ||
''' | ||
|
||
This will edit the `config.txt` file of this task adding several lines `script_params_list_add` for each of the combinations of the input params | ||
|
||
3) Launch the task using `run_vtr_task.py` script | ||
4) When the run is done, run the script to parse the results as follows: | ||
''' | ||
python control_runs.py --parse <path_to_task_to_parse> | ||
''' | ||
|
||
The script will generate 3 csv files in the runXXX idrectory of the task as follows: | ||
- `full_res.csv` that exactly matches parse_results.txt but in csv format | ||
- `avg_seed.csv` that averages the results of the each circuit with one set of parameters over the different seed values | ||
- `geomean_res.csv` that geometrically average the results of all the circuits over the same set of parameters | ||
- `summary.xlsx` that merges all the previously mentioned sheets in a single spreadsheet |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,263 @@ | ||
#!/usr/bin/env python3 | ||
|
||
""" This module controls and parses the large runs that includes | ||
sweeping multiple parameters. """ | ||
import itertools | ||
import os | ||
import sys | ||
import csv | ||
import pandas as pd | ||
import numpy as np | ||
from scipy import stats | ||
|
||
# Define the global dictionary | ||
PARAMS_DICT = { | ||
"--seed": [1, 2], | ||
"--place_algorithm": ["criticality_timing"], | ||
"--place_agent_epsilon": [0.3], | ||
} | ||
|
||
# Set to True if you only care about specific metrics | ||
KEEP_METRICS_ONLY = True | ||
PARSED_METRICS = ["num_io", "num_LAB"] | ||
|
||
|
||
def safe_gmean(series): | ||
"""Calculate the geomeans of a series in a safe way even for large numbers""" | ||
series = series.replace({0: np.nan}) | ||
return stats.gmean(series.dropna()) | ||
|
||
|
||
def generate_combinations(): | ||
"""Generates all the parameter combinations between the input parameters values.""" | ||
keys = list(PARAMS_DICT.keys()) | ||
values = list(PARAMS_DICT.values()) | ||
combinations = list(itertools.product(*values)) | ||
|
||
lines = [] | ||
for combination in combinations: | ||
params_str = " ".join(f"{key} {value}" for key, value in zip(keys, combination)) | ||
lines.append(f"script_params_list_add={params_str}\n") | ||
return lines | ||
|
||
|
||
def parse_results(input_path): | ||
""" | ||
Parse the output results | ||
""" | ||
# Find the runXXX directory with the largest XXX | ||
run_dirs = [ | ||
d for d in os.listdir(input_path) if d.startswith("run") and d[3:].isdigit() | ||
] | ||
if not run_dirs: | ||
print("No runXXX directories found in the specified input path.") | ||
sys.exit(1) | ||
|
||
largest_run_path = os.path.join(input_path, max(run_dirs, key=lambda d: int(d[3:]))) | ||
|
||
# Path to parse_results.txt and full_res.csv | ||
full_res_csv_path = os.path.join(largest_run_path, "full_res.csv") | ||
|
||
if not os.path.exists(os.path.join(largest_run_path, "parse_results.txt")): | ||
print("File parse_results.txt not found.") | ||
sys.exit(1) | ||
|
||
# Read the parse_results.txt file and write to full_res.csv | ||
with open( | ||
os.path.join(largest_run_path, "parse_results.txt"), "r" | ||
) as txt_file, open(full_res_csv_path, "w", newline="") as csv_file: | ||
reader = csv.reader(txt_file, delimiter="\t") | ||
writer = csv.writer(csv_file) | ||
|
||
headers = next(reader) | ||
script_params_index = headers.index("script_params") | ||
|
||
# Create new headers with PARAMS_DICT keys | ||
new_headers = ( | ||
headers[:script_params_index] | ||
+ list(PARAMS_DICT.keys()) | ||
+ headers[script_params_index + 1 :] | ||
) | ||
writer.writerow(new_headers) | ||
|
||
for row in reader: | ||
script_params_value = row[script_params_index] | ||
script_params_dict = parse_script_params(script_params_value) | ||
new_row = ( | ||
row[:script_params_index] | ||
+ [script_params_dict.get(key, "") for key in PARAMS_DICT] | ||
+ row[script_params_index + 1 :] | ||
) | ||
writer.writerow(new_row) | ||
|
||
print(f"Converted parse_results.txt to {full_res_csv_path}") | ||
|
||
# Generate avg_seed.csv if --seed column exists | ||
generate_avg_seed_csv(full_res_csv_path, largest_run_path) | ||
print("Generated average seed results") | ||
|
||
# Generate gmean_res.csv | ||
generate_geomean_res_csv( | ||
os.path.join(largest_run_path, "avg_seed.csv"), largest_run_path | ||
) | ||
print("Generated geometric average results over all the circuits") | ||
|
||
generate_xlsx(largest_run_path) | ||
print("Generated xlsx that merges all the result csv files") | ||
|
||
|
||
def generate_xlsx(largest_run_path): | ||
"""Generate a xlsx file that includes the full results, average results over the seed | ||
and the geometrically averaged results over all the benchmarks.""" | ||
|
||
csv_files = [ | ||
os.path.join(largest_run_path, "full_res.csv"), | ||
os.path.join(largest_run_path, "avg_seed.csv"), | ||
os.path.join(largest_run_path, "geomean_res.csv"), | ||
] | ||
sheet_names = ["Full res", "Avg. seeds", "Summary"] | ||
output_excel_file = os.path.join(largest_run_path, "summary.xlsx") | ||
# Create an Excel writer object | ||
# pylint: disable=abstract-class-instantiated | ||
with pd.ExcelWriter(output_excel_file, engine="xlsxwriter") as writer: | ||
for csv_file, sheet_name in zip(csv_files, sheet_names): | ||
# Read each CSV file | ||
df = pd.read_csv(csv_file) | ||
|
||
# Write each DataFrame to a different sheet | ||
df.to_excel(writer, sheet_name=sheet_name, index=False) | ||
|
||
|
||
def parse_script_params(script_params): | ||
"""Helper function to parse the script params values from earch row in | ||
the parse_results.txt""" | ||
|
||
parsed_params = {key: "" for key in PARAMS_DICT} | ||
|
||
parts = script_params.split("_") | ||
i = 0 | ||
|
||
while i < len(parts): | ||
for key in PARAMS_DICT: | ||
key_parts = key.split("_") | ||
key_length = len(key_parts) | ||
|
||
if parts[i : i + key_length] == key_parts: | ||
value_parts = [] | ||
j = i + key_length | ||
|
||
while j < len(parts) and not any( | ||
parts[j : j + len(k.split("_"))] == k.split("_") | ||
for k in PARAMS_DICT | ||
): | ||
value_parts.append(parts[j]) | ||
j += 1 | ||
|
||
parsed_params[key] = "_".join(value_parts) | ||
i = j - 1 | ||
break | ||
|
||
i += 1 | ||
|
||
return parsed_params | ||
|
||
|
||
def generate_avg_seed_csv(full_res_csv_path, output_dir): | ||
"""Generate the average results over the seeds""" | ||
df = pd.read_csv(full_res_csv_path) | ||
assert isinstance(df, pd.DataFrame) | ||
|
||
if KEEP_METRICS_ONLY: | ||
col_to_keep = ["circuit", "arch"] | ||
col_to_keep.extend(list(PARAMS_DICT.keys())) | ||
col_to_keep.extend(PARSED_METRICS) | ||
df = df.drop( | ||
# pylint: disable=no-member | ||
columns=[col for col in df.columns if col not in col_to_keep] | ||
) | ||
|
||
# Check if '--seed' column is present | ||
if "--seed" in df.columns: | ||
# Determine the grouping keys: ['circuit', 'arch'] + keys from PARAMS_DICT that | ||
# are present in the dataframe | ||
grouping_keys = ["circuit", "arch"] + [ | ||
key for key in PARAMS_DICT if key in df.columns and key != "--seed" | ||
] | ||
|
||
# Group by specified keys and compute the mean for numeric columns | ||
df_grouped = df.groupby(grouping_keys).mean(numeric_only=True).reset_index() | ||
|
||
# Drop the '--seed' column if it exists | ||
if "--seed" in df_grouped.columns: | ||
df_grouped.drop(columns=["--seed"], inplace=True) | ||
else: | ||
df_grouped = df | ||
|
||
# Save the resulting dataframe to a CSV file | ||
avg_seed_csv_path = os.path.join(output_dir, "avg_seed.csv") | ||
df_grouped.to_csv(avg_seed_csv_path, index=False) | ||
|
||
|
||
def generate_geomean_res_csv(full_res_csv_path, output_dir): | ||
"""Generate the geometric average results over the different circuits""" | ||
|
||
df = pd.read_csv(full_res_csv_path) | ||
|
||
param_columns = [key for key in PARAMS_DICT if key != "--seed"] | ||
non_param_columns = [col for col in df.columns if col not in param_columns] | ||
|
||
# pylint: disable=no-member | ||
geomean_df = ( | ||
df.groupby(param_columns) | ||
.agg( | ||
{ | ||
col: (lambda x: "" if x.dtype == "object" else safe_gmean(x)) | ||
for col in non_param_columns | ||
} | ||
) | ||
.reset_index() | ||
) | ||
|
||
geomean_df.drop(columns=["circuit"], inplace=True) | ||
geomean_df.drop(columns=["arch"], inplace=True) | ||
|
||
geomean_res_csv_path = os.path.join(output_dir, "geomean_res.csv") | ||
geomean_df.to_csv(geomean_res_csv_path, index=False) | ||
|
||
|
||
def main(): | ||
"""Main function""" | ||
|
||
if len(sys.argv) < 3: | ||
print("Usage: script.py <option> <path_to_directory>") | ||
sys.exit(1) | ||
|
||
option = sys.argv[1] | ||
directory_path = sys.argv[2] | ||
|
||
if option == "--generate": | ||
# Generate the combinations | ||
lines = generate_combinations() | ||
|
||
# Define the path to the config file | ||
config_path = os.path.join(directory_path, "config", "config.txt") | ||
|
||
# Ensure the config directory exists | ||
os.makedirs(os.path.dirname(config_path), exist_ok=True) | ||
|
||
# Append the lines to the config file | ||
with open(config_path, "a") as file: | ||
file.writelines(lines) | ||
|
||
print(f"Appended lines to {config_path}") | ||
|
||
elif option == "--parse": | ||
parse_results(directory_path) | ||
|
||
else: | ||
print("Invalid option. Use --generate or --parse") | ||
sys.exit(1) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |