Skip to content

Exploring the Limits of Compact Model for Age Estimation. CVPR2019

License

Notifications You must be signed in to change notification settings

vicwer/C3AE_Age_Estimation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

C3AE_Age_Estimation

Introduction

C3AE: Exploring the Limits of Compact Model for Age Estimation

This repo is organized as follows:

C3AE_Age_Estimation/
    |->examples
    |->models
    |->prepare_data
    |->data
    |   |->img_list
    |   |->dataset
    |->tf_records
    |->ckpt
    |->tools

Requirements

  1. tensorflow-gpu==1.12.0 (I only test on tensorflow 1.12.0)
  2. python==3.4.3
  3. numpy
  4. easydict
  5. opencv==3.4.1
  6. Python packages might missing. pls fix it according to the error message.

Installation, Prepare data, Training

Installation

  1. Clone the C3AE_Age_Estimation repository, and we'll call the directory that you cloned C3AE_Age_Estimation as ${C3AE_Age_Estimation_ROOT}.
git clone https://github.com/vicwer/C3AE_Age_Estimation.git
  1. Create data, tf_records and ckpt directory.
cd ${C3AE_Age_Estimation_ROOT};
mkdir ckpt
mkdir tf_records
mkdir data
cd data
mkdir img_list
mkdir train_list
mkdir dataset

Prepare data

data should be organized as follows:

data/
    |->img_list/img_list.txt
    |->train_list/train.txt
    |->dataset/*.png
  1. Download dataset: IMDB-WIKI, Morph II, FG-NET

  2. Generate img_list.txt formatted as "img_path age"

  3. Generate train.txt formatted as "img_path age_label age_Yn_vector"

  4. Generate tf_records:

cd prepare_data
python3 gen_tf_records_fast_to_uint8.py

Training

I provide common used config.py in ${C3AE_Age_Estimation_ROOT}, which can set hyperparameters.

e.g.

cd ${C3AE_Age_Estimation_ROOT}
vim config.py
cfg.train.num_gpus = {your gpu nums}
etc.

cd ${C3AE_Age_Estimation_ROOT}/examples/
python3 multi_gpus_train.py

TODO:

test.py
tools.py
pre-train model
...

GOOD LUCK...

About

Exploring the Limits of Compact Model for Age Estimation. CVPR2019

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages