-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreport.Rmd
492 lines (353 loc) · 18.6 KB
/
report.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
---
title: "Figures for third paper mk2"
author: "Science"
date: "`r Sys.Date()`"
output:
html_document:
toc: TRUE
number_sections: TRUE
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE,
message = FALSE,
warning = FALSE,
dpi = 300,
fig.ext = c("png"),
fig.width = 10,
fig.height = 10,
fig.path = "figures/")
options(dplyr.summarise.inform = FALSE)
```
# Brief description
Models were rerun for measles, rubella, meningitis A, Hepatitis B, HPV and yellow fever. Four scenarios were run: no-vaccination, default-update, default-update-catchup, default-nocovid. The impacts were calculated generally as:
default_nocovid = novax - default_nocovid,
default_update = novax - default_update,
default_catchup = default_update - default_update_catchup,
but we also consider default_nocovid-default_update. The time period we consider is 2020 to 2030.
# Where has the 2020-21 disruption left us?
```{r hdw_cross_deaths}
hdw <- headline_diff_full_who()
hdw %>%
flextable() %>%
set_caption("Excess deaths per calendar year.")
hdw %>% write.csv("excess_cross_deaths.csv", row.names = FALSE)
```
```{r hdw_other}
hdw <- headline_diff_full_who(outc = "cases")
hdw %>% write.csv("excess_cross_cases.csv", row.names = FALSE)
hdw <- headline_diff_full_who(outc = "dalys")
hdw %>% write.csv("excess_cross_dalys.csv", row.names = FALSE)
hdw <- headline_diff_full_who(d_def = d_def_cohort_2030, d_noc = d_noc_cohort_2030)
hdw %>% write.csv("excess_cohort_deaths.csv", row.names = FALSE)
hdw <- headline_diff_full_who(d_def = d_def_cohort_2030, d_noc = d_noc_cohort_2030, outc = "cases")
hdw %>% write.csv("excess_cohort_cases.csv", row.names = FALSE)
hdw <- headline_diff_full_who(d_def = d_def_cohort_2030, d_noc = d_noc_cohort_2030, outc = "dalys")
hdw %>% write.csv("excess_cohort_dalys.csv", row.names = FALSE)
```
# What can be done to mitigate losses in coverage
## Headline figures {.tabset}
### Tables
```{r mitigate_headline}
t <- mitigate_table(d_def_cross_2030, grouping = NULL)
t_death <- t %>% filter(outcome == "deaths_catchup_impact") %>% mutate(across(-outcome, round))
out <- paste0(t_death$mean_out, " (95%[", t_death$lo_95, ", ", t_death$hi_95,
"], 80%[", t_death$lo_80, ", ",t_death$hi_80,
"], 50%[", t_death$lo_50, ", ", t_death$hi_50, "]) med =", t_death$median_out)
t2 <- mitigate_table(d_def_cohort_2030, grouping = NULL)
t2_death <- t2 %>% filter(outcome == "deaths_catchup_impact") %>% mutate(across(-outcome, round))
out2 <- paste0(t2_death$mean_out, " (95%[", t2_death$lo_95, ", ", t2_death$hi_95,
"], 80%[", t2_death$lo_80, ", ",t2_death$hi_80,
"], 50%[", t2_death$lo_50, ", ", t2_death$hi_50, "]) med =", t2_death$median_out)
```
Catch-up activities as we have modelled them would avert `r out` deaths between calendar years 2020-2030 and `r out2` between birth cohorts 2020-2030.
```{r mitigate_pc}
noc <- d_noc_cross_2030 %>%
select(run_id, country, year, deaths_default, modelling_group, disease, who_region) %>%
rename(deaths_nocovid = deaths_default)
def <- d_def_cross_2030 %>%
select(run_id, country, year, deaths_default, deaths_catchup, modelling_group, disease, who_region) %>%
rename(deaths_covid = deaths_default,
deaths_catchup = deaths_catchup)
comb <- left_join(def, noc, by = join_by(run_id, country, year, modelling_group, disease, who_region))
comb <- comb %>% filter(year %in% 2020:2030)
comb <- comb %>%
mutate(death_diff = deaths_covid - deaths_nocovid,
deaths_catch = deaths_covid - deaths_catchup)
comb <- comb %>%
group_by(disease, run_id, who_region, year, country) %>%
summarise(death_diff = mean(death_diff, na.rm = TRUE),
deaths_catch = mean(deaths_catch, na.rm = TRUE))
w <- comb %>%
group_by(run_id) %>%
summarise(death_diff = sum(death_diff),
deaths_catch = sum(deaths_catch)) %>%
mutate(propn = deaths_catch/death_diff)
w_20_30 <- paste0(round(mean(w$propn*100), 2), "% (95%[", round(quantile(w$propn*100, 0.025),2), "%, ", round(quantile(w$propn*100, 0.975),2), "%]) med=", round(median(w$propn*100), 2))
num_20_30 <- paste0(round(mean(w$deaths_catch)), " (95%[", round(quantile(w$deaths_catch, 0.025)), ", ", round(quantile(w$deaths_catch, 0.975)), "]) med=", round(median(w$deaths_catch)))
denom_20_30 <- paste0(round(mean(w$death_diff)), " (95%[", round(quantile(w$death_diff, 0.025)), ", ", round(quantile(w$death_diff, 0.975)), "]) med=", round(median(w$death_diff)))
comb <- comb %>%
filter(year %in% 2023:2030)
w <- comb %>%
group_by(run_id) %>%
summarise(death_diff = sum(death_diff),
deaths_catch = sum(deaths_catch)) %>%
mutate(propn = deaths_catch/death_diff)
w_23_30 <- paste0(round(mean(w$propn*100), 2), "% (95%[", round(quantile(w$propn*100, 0.025),2), "%, ", round(quantile(w$propn*100, 0.975),2), "%]) med=", round(median(w$propn*100), 2))
num_23_30 <- paste0(round(mean(w$deaths_catch)), " (95%[", round(quantile(w$deaths_catch, 0.025)), ", ", round(quantile(w$deaths_catch, 0.975)), "]) med=", round(median(w$deaths_catch)))
denom_23_30 <- paste0(round(mean(w$death_diff)), " (95%[", round(quantile(w$death_diff, 0.025)), ", ", round(quantile(w$death_diff, 0.975)), "]) med=", round(median(w$death_diff)))
```
This represents `r w_20_30` of excess deaths between calendar years 2020 and 2030 [numerator `r num_20_30`, denominator `r denom_20_30`] due to disruptions or `r w_23_30` of excess deaths between calendar years 2023 and 2030 [numerator `r num_23_30`, denominator `r denom_23_30`].
```{r mitigate_who_cross}
main <- mitigate_who_table(d_def_cross_2030, tot=t)
main_cases <- mitigate_who_table(d_def_cross_2030, outc = "cases", tot=t)
main_dalys <- mitigate_who_table(d_def_cross_2030, outc = "dalys", tot=t)
main %>%
flextable(cwidth = 2) %>%
flextable::set_caption("Mitigated deaths due to catch-up activities- calendar view.")
write.csv(main, "mitigate_cross_deaths.csv", row.names = FALSE)
write.csv(main_cases, "mitigate_cross_cases.csv", row.names = FALSE)
write.csv(main_dalys, "mitigate_cross_dalys.csv", row.names = FALSE)
```
```{r mitigate_who_cohort}
main <- mitigate_who_table(d_def_cohort_2030, tot=t2)
main_cases <- mitigate_who_table(d_def_cohort_2030, outc = "cases", tot=t2)
main_dalys <- mitigate_who_table(d_def_cohort_2030, outc = "dalys", tot=t2)
main %>%
flextable(cwidth = 2) %>%
flextable::set_caption("Mitigated deaths due to catch-up activities- cohort view.")
write.csv(main, "mitigate_cohort_deaths.csv", row.names = FALSE)
write.csv(main_cases, "mitigate_cohort_cases.csv", row.names = FALSE)
write.csv(main_dalys, "mitigate_cohort_dalys.csv", row.names = FALSE)
```
# Full uncertainty figures {.tabset}
## cross
```{r burden_unc}
noc <- d_noc_cross_2030 %>%
select(run_id, country, year, deaths_default,cases_default, dalys_default, modelling_group, disease, who_region) %>%
rename(deaths_nocovid = deaths_default,
cases_nocovid = cases_default,
dalys_nocovid = dalys_default)
def <- d_def_cross_2030 %>%
select(run_id, country, year, deaths_default, cases_default, dalys_default, modelling_group, disease, who_region) %>%
rename(deaths_covid = deaths_default,
cases_covid = cases_default,
dalys_covid = dalys_default)
comb <- left_join(def, noc, by = join_by(run_id, country, year, modelling_group, disease, who_region))
comb <- comb %>%
mutate(death_diff = deaths_covid-deaths_nocovid,
case_diff = cases_covid - cases_nocovid,
daly_diff = dalys_covid - dalys_nocovid)
comb <- comb %>%
group_by(run_id, country, year, who_region, disease) %>%
summarise(death_diff = mean(death_diff),
deaths_covid = mean(deaths_covid),
deaths_nocovid = mean(deaths_nocovid),
case_diff = mean(case_diff),
cases_covid = mean(cases_covid),
cases_nocovid = mean(cases_nocovid),
daly_diff = mean(daly_diff),
dalys_covid = mean(dalys_covid),
dalys_nocovid = mean(dalys_nocovid),)
comb3 <- comb %>%
ungroup() %>%
select(run_id, country, year, disease, deaths_covid, deaths_nocovid) %>%
pivot_longer(names_to = "scenario", values_to = "deaths", -c(run_id, country, year, disease)) %>%
group_by(run_id, year, disease, scenario) %>%
summarise(deaths = sum(deaths))
```
```{r excess_deaths_full_uncert_cross ,fig.cap="Highlighted if median is greater than 200 at any point, only figures where the abs(median) excess is >50 are included."}
p <- fun_excess_ribbon_95(comb, "deaths", thresh=200, thresh2=50)
ggsave(plot=p, filename="excess_deaths_full_uncert_cross-1.png", path="figures", bg = "white", width = 12, height = 10)
ggsave(plot=p, filename="excess_deaths_full_uncert_cross-1.pdf", path="figures", bg = "white", width = 12, height = 10)
```
```{r excess_cases_full_uncert_cross, fig.cap="Highlighted if median is greater than 200 at any point, only figures where the abs(median) excess is >50 are included."}
fun_excess_ribbon(comb, "cases", thresh=200, thresh2=50)
```
```{r excess_dalys_full_uncert_cross, fig.cap="Highlighted if median is greater than 200 at any point, only figures where the abs(median) excess is >50 are included."}
fun_excess_ribbon(comb, "dalys", thresh=200, thresh2=50)
```
```{r cross_solar_system_who, fig.width = 12}
fun_solar_system()
```
```{r cross_solar_system_who_2023, fig.width = 12}
fun_solar_system(yar = 2023:2030)
```
```{r cross_solar_system_who_2023_determ, fig.width = 12}
p <- fun_solar_system(yar = 2023:2030, determ=TRUE)
ggsave(plot=p, filename="cross_solar_system_who_2023_determ-1.png", path="figures", bg = "white", width = 12, height = 10)
ggsave(plot=p, filename="cross_solar_system_who_2023_determ-1.pdf", path="figures", bg = "white", width = 12, height = 10)
```
```{r cross_solar_system_who_2023_cases, fig.width = 12}
fun_solar_system(yar = 2023:2030, outc = "cases")
```
```{r cross_solar_system_who_2023_cases_determ, fig.width = 12}
fun_solar_system(yar = 2023:2030, outc = "cases", determ=TRUE)
```
```{r cross_solar_system_who_2023_dalys, fig.width = 12}
fun_solar_system(yar = 2023:2030, outc="dalys")
```
```{r cross_solar_system_who_2023_dalys_determ, fig.width = 12}
fun_solar_system(yar = 2023:2030, outc="dalys", determ=TRUE)
```
```{r plot_mitigate_timing_cross_deaths, fig.width=12, fig.height=12}
p <- plot_mitigate_timing_95(outc = "deaths", thresh2=50)
ggsave(plot=p, filename="plot_mitigate_timing_cross_deaths-1.png", path="figures", bg = "white", width = 12, height = 10)
ggsave(plot=p, filename="plot_mitigate_timing_cross_deaths-1.pdf", path="figures", bg = "white", width = 12, height = 10)
```
```{r plot_mitigate_timing_cross_cases, fig.width=12, fig.height=12}
plot_mitigate_timing(outc = "cases", thresh2=50)
```
```{r plot_mitigate_timing_cross_dalys, fig.width=12, fig.height=12}
plot_mitigate_timing(outc = "dalys", thresh2=50)
```
# Interim update
In this section we perform a simple interim update on the `covidimpactiu` touchstone.
```{r agg data}
comb_dat <- bind_rows(lapply(c(1),
function(x){
fun_join_fvps_df_iu(fvps, df, RI_scaling = x, ctry_subset = ctry_subset_parm, dis_subset = NULL) %>%
mutate(scaling = x)
}))
cc <- make_country_classifiers(con)
# aggregate
comb_dat_agg_ave <- comb_dat %>%
group_by(country, disease, vaccine, activity_type, year, scenario_description, scenario_type, scaling, run_id) %>%
summarise(deaths = sum(deaths, na.rm = TRUE), cases = sum(cases, na.rm = TRUE), dalys = sum(dalys, na.rm = TRUE))
```
## Overall differences {.tabset}
We present the percentage difference to the `default-update` baseline over the entire time period 2020:2030 for each scaling of the potential routine-intensified impact ratio.
```{r diff}
comb_dat_agg_ave <- comb_dat_agg_ave %>%
left_join(comb_dat_agg_ave %>%
filter(scenario_type %in% "default_update") %>%
ungroup() %>%
select(-c(scenario_type, scenario_description)) %>%
rename(deaths_baseline = deaths, cases_baseline = cases, dalys_baseline = dalys),
by = c("country", "disease", "vaccine", "activity_type", "year", "scaling", "run_id"))
comb_dat_agg_ave <- comb_dat_agg_ave %>% left_join(cc, by = "country")
```
## What is the breakdown of excess deaths by year and activity type? {.tabset}
```{r }
t <- comb_dat_agg_ave %>%
filter(scenario_type %in% c("default_nocovid", "default_update")) %>%
filter(scaling == 1) %>%
filter(year %in% 2020:2030) %>%
group_by(scenario_type, run_id) %>%
summarise(all_deaths_averted = sum(deaths, na.rm = TRUE)) %>%
pivot_wider(names_from = scenario_type, values_from = all_deaths_averted)
noc <- tidy_qi(t$default_nocovid)
noc10 <- tidy_qi(t$default_nocovid/10)
cov <- tidy_qi(t$default_update)
cov10 <- tidy_qi(t$default_update/10)
diff <- tidy_qi(t$default_nocovid-t$default_update)
diffpc <- tidy_qi((t$default_nocovid-t$default_update)/t$default_update*100, roundamt = 2)
```
We estimate that in the absence of COVID-related disruptions, with conservative targets by 2030, there will be `r noc` deaths averted over the decade, so `r noc10` on average a year. In contrast, with COVID-related disruptions and recovery, we estimate that `r cov` will be averted over the decade, so `r cov10` on average a year. This is a difference of `r diffpc`%. We may also consider this by country, below.
```{r }
t <- comb_dat_agg_ave %>%
filter(scenario_type %in% c("default_nocovid", "default_update")) %>%
filter(scaling == 1) %>%
filter(year %in% 2020:2030) %>%
group_by(scenario_type, run_id, country) %>%
summarise(all_deaths_averted = sum(deaths, na.rm = TRUE)) %>%
pivot_wider(names_from = scenario_type, values_from = all_deaths_averted)
t2 <- t
t2 <- t2 %>%
group_by(country) %>%
summarise(noc = tidy_qi(default_nocovid),
cov = tidy_qi(default_update),
diff = tidy_qi(default_nocovid - default_update),
diffpc = tidy_qi((default_nocovid-default_update)/default_update*100))
t2 %>% flextable(cwidth=2)
t2 %>% write.csv("pc_drop_per_country.csv", row.names = FALSE)
```
```{r }
t <- comb_dat_agg_ave %>%
filter(scenario_type %in% c("default_nocovid", "default_update")) %>%
filter(scaling == 1) %>%
filter(year %in% 2020:2030) %>%
group_by(scenario_type, activity_type, run_id) %>%
summarise(all_deaths_averted = sum(deaths, na.rm = TRUE)) %>%
pivot_wider(names_from = scenario_type, values_from = all_deaths_averted) %>%
mutate(diff = default_nocovid - default_update) %>%
group_by(run_id) %>%
mutate(propn = diff/sum(diff))
campaign_prop <- tidy_qi(t$propn[t$activity_type=="campaign"]*100, 2)
routine_prop <- tidy_qi(t$propn[t$activity_type=="routine"]*100, 2)
```
Of the deaths averted over the decade, and the excess deaths due to coverage disruptions, `r campaign_prop`% is due to differences in campaigns and `r routine_prop`% is due to routine differences. The breakdown is shown below.
```{r}
t <- comb_dat_agg_ave %>%
filter(scenario_type %in% c("default_nocovid", "default_update")) %>%
filter(scaling == 1) %>%
filter(year %in% 2020:2030) %>%
group_by(scenario_type, activity_type, disease, run_id) %>%
summarise(all_deaths_averted = sum(deaths, na.rm = TRUE)) %>%
pivot_wider(names_from = scenario_type, values_from = all_deaths_averted) %>%
mutate(diff = default_nocovid - default_update) %>%
group_by(disease, run_id) %>%
mutate(propn = diff/sum(diff)) %>% arrange(disease)
t %>%
group_by(disease, activity_type) %>%
summarise(propn = tidy_qi(propn, roundamt = 2)) %>%
flextable(cwidth = 2)
write.csv(t%>%
group_by(disease, activity_type) %>%
summarise(propn = tidy_qi(propn, roundamt = 4)), "difference_activity_type.csv", row.names = FALSE)
```
```{r}
t <- comb_dat_agg_ave %>%
filter(scenario_type %in% c("default_nocovid", "default_update")) %>%
filter(scaling == 1) %>%
filter(year %in% 2020:2030) %>%
group_by(scenario_type, year, disease, run_id) %>%
summarise(all_deaths_averted = sum(deaths, na.rm = TRUE)) %>%
pivot_wider(names_from = scenario_type, values_from = all_deaths_averted) %>%
mutate(diff = default_nocovid - default_update) %>%
group_by(disease) %>%
mutate(propn = diff/sum(diff)) %>% arrange(disease) %>%
mutate(year_group = ifelse(year %in% 2020:2021, "2020-1", ifelse(year %in% 2022:2025, "2022-5", "2026-30"))) %>%
group_by(year_group, disease, run_id) %>%
summarise(diff_group = round(sum(diff))) %>%
group_by(disease, run_id) %>%
mutate(propn_group = round(diff_group/sum(diff_group)*100, 2))
t %>% mutate(year_group = as.character(year_group)) %>%
group_by(disease, year_group) %>%
summarise(propn_group = tidy_qi(propn_group, roundamt = 2)) %>%
flextable(cwidth = 2)
write.csv(t%>% mutate(year_group = as.character(year_group)) %>%
group_by(disease, year_group) %>%
summarise(propn_group = tidy_qi(propn_group, roundamt = 4)), "difference_year.csv", row.names = FALSE)
```
# All disease stacked bar
```{r disease_stacked_bar, fig.height=8, fig.width=12, fig.cap="Interim update projected excess deaths (hundreds) due to coverage disruption between 2020 and 2030"}
yar <- 2020:2030
df_iu <- df_iu %>% left_join(ctry %>% select(country, who_region))
t <- df_iu %>%
rename(short_name = scenario_type, deaths_averted = deaths) %>%
filter(year %in% yar) %>%
group_by(disease, year, short_name, country, who_region, vaccine) %>%
mutate(who_region = ifelse(who_region=="PAHO", who_region, gsub("O", "", who_region))) %>%
summarise(deaths_averted = mean(deaths_averted, na.rm = TRUE)) %>%
group_by(disease, short_name, who_region) %>%
summarise(deaths_averted = sum(deaths_averted, na.rm = TRUE)) %>%
select(disease, short_name, deaths_averted, who_region) %>%
pivot_wider(names_from = short_name, values_from = deaths_averted) %>%
mutate(excess_deaths = default_nocovid - default_update) %>%
mutate(disease = as.factor(disease))%>%
filter((excess_deaths)>1)%>%
left_join(ctry %>% group_by(who_region) %>% summarise(n_ctry = length(unique(country))), by = "who_region")
t <- t %>%
mutate(group = disease, value = excess_deaths/100, who_region = paste0(who_region, " (", n_ctry," VIMC countries)"))
p <- t %>%
ggplot()+
aes(fill = group, y = value, x = who_region)+
geom_col()+
scale_fill_manual(values=disease_palette(unique(t$disease))$pal)+
coord_flip()+
theme_minimal()+
#facet_wrap(who_region~., ncol = 1)+
theme(legend.position = "bottom")+
labs(fill = "Disease/ Vaccine", x = "WHO region", y = "Excess deaths (100s)")
ggsave(plot=p, filename="disease_stacked_bar-1.pdf", path="figures", bg = "white", width = 12, height = 8)
```