Skip to content
This repository has been archived by the owner on Apr 13, 2021. It is now read-only.
/ SIHR Public archive

Commit

Permalink
Removed images. Added instructions on how to download them from archi…
Browse files Browse the repository at this point in the history
…val links instead
  • Loading branch information
vitorsr committed Aug 29, 2019
1 parent 507aa4a commit 854586f
Show file tree
Hide file tree
Showing 6 changed files with 135 additions and 128 deletions.
100 changes: 46 additions & 54 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,14 +21,15 @@ I welcome and encourage contributions to this project upon review. Please check

### *Raison d'être*

I started out this repository by implementing, translating and collecting code snippets from the *rare* available<sup>2,3,4,5</sup> codes. Oftentimes papers are cryptical, codes are in C/C++ (requires compilation and major source code modification for general testing), or are just unavailable.
I started out this repository by implementing, translating and collecting code snippets from the *rare* available<sup>2,3,4,5</sup> codes. Oftentimes papers are cryptical, codes are in C/C++ (requires compilation and major source code modification for general testing), or are just unavailable. See, e.g. this CSDN post<sup>6</sup> that has no valid links at all.

In this context, this repository aims to be a continous algorithmic aid for ongoing research and development of SIHR methods.

<sup>2</sup> Tan and Ikeuchi. [Online]. Available: <http://tanrobby.github.io/code/highlight.zip>
<sup>3</sup> Shen *et al.* [Online]. Available: <http://ivlab.org/publications/PR2008_code.zip>
<sup>4</sup> ~~Yang *et al.* [Online]. Available: <http://www6.cityu.edu.hk/stfprofile/qiyang.htm>~~
<sup>5</sup> Shen and Zheng. [Online]. Available: <http://ivlab.org/publications/AO2013_code.zip>
<sup>5</sup> Shen and Zheng. [Online]. Available: <http://ivlab.org/publications/AO2013_code.zip>
<sup>6</sup> ~~https://blog.csdn.net/nvidiacuda/article/details/8078167~~

## Usage

Expand Down Expand Up @@ -95,76 +96,67 @@ Note: Akashi and Okatani's [10] method has highly fluctuating results because of

### Dataset

In technical literature, there exist two ground truth datasets commonly used right now. One by Shen and Zheng [9] which is informally distributed alongside their code<sup>5</sup>, and one by Grosse *et al.* [12] in a dedicated page<sup>7</sup>. To the best of my knowledge, both are freely distributed without a license (it is of my understanding that the images implicitly exist solely for research purposes).
In technical literature, there exist two ground truth datasets commonly used right now. One by Shen and Zheng [9] which is distributed alongside their code, and one by Grosse *et al.* [12] in a dedicated page<sup>7</sup>.

As a part of the toolbox, I've included Tan and Ikeuchi's<sup>2</sup> [4], Shen *et al.*'s<sup>3</sup> [6] and Shen and Zheng's<sup>5</sup> [9] test images in [`images`](https://github.com/vitorsr/SIHR/tree/master/images).
Other test images are included alongside the code for Shen *et al.* [6] and Yang *et al.* [8].

Follow the instructions in [`images`](https://github.com/vitorsr/SIHR/tree/master/images) in order to download a local copy of these images from the respective authors' pages.

<sup>7</sup> Grosse *et al.* [Online]. Available: <http://www.cs.toronto.edu/~rgrosse/intrinsic/>

### Quality

Quantitative results reported are usually regarding the quality of the recovered diffuse component with respect to the ground truth available in the Shen and Zheng [9] test image set.

Reproduced results below are available in the [`utils/my_quality.m`](https://github.com/vitorsr/SIHR/blob/master/utils/my_clip.m) script.
Reproduced results below are available in the [`utils/my_quality.m`](https://github.com/vitorsr/SIHR/blob/master/utils/my_quality.m) script.

#### Highest (self and peer-reported | reproduced) PSNR results (in dB)

|Year| Method | *animals* | *cups* | *fruit* | *masks* | Reproduced | *animals* | *cups* | *fruit* | *masks* |
|:--:|--------------------|:---------:|:---------:|:---------:|:---------:|--------------------|:---------:|:------:|:-------:|:-------:|
|2005| Tan and Ikeuchi | 30.2 | 30.1 | 29.6 | 25.6 | Tan and Ikeuchi | 30.4 | 31.6 | 30.4 | 25.8 |
|2006| Yoon *et al.* | - | - | - | - | Yoon *et al.* | 32.9 | 33.3 | 36.6 | 34.1 |
|2008| Shen *et al.* | 34.6 | 37.7 | 37.6 | 31.7 | Shen *et al.* | 34.2 | 37.5 | 38.0 | 32.1 |
|2009| Shen and Cai | 34.8 | 37.6 | 36.9 | 34.0 | Shen and Cai | 34.9 | 37.6 | 36.7 | 34.0 |
|2010| Yang *et al.* | *37.2* | 38.0 | 37.6 | 32.2 | Yang *et al.* | 36.5 | 37.5 | 36.2 | 33.5 |
|2013| Shen and Zheng | **37.3** | **39.3** | *38.9* | 34.1 | Shen and Zheng | 37.5 | 38.3 | 38.2 | 32.7 |
|2015| Liu *et al.* | 33.4 | 37.6 | 35.1 | **34.5** | - | - | - | - | - |
|2016| Akashi and Okatani | 26.8 | 35.7 | 30.8 | 32.3 | Akashi and Okatani | 32.7 | 35.9 | 34.8 | 34.0 |
|2016| Suo *et al.* | - | - | **40.4** | 34.2 | - | - | - | - | - |
|2017| Ren *et al.* | - | 38.0 | 37.7 | **34.5** | - | - | - | - | - |
|2018| Guo *et al.* | 35.7 | *39.1* | 36.4 | *34.4* | - | - | - | - | - |
|Year| Method | *animals* | *cups* | *fruit* | *masks* | Reproduced | *animals* | *cups* | *fruit* | *masks* |
|:--:|--------------------|:---------:|:---------:|:---------:|:---------:|--------------|:---------:|:------:|:-------:|:-------:|
|2005| Tan and Ikeuchi | 30.2 | 30.1 | 29.6 | 25.6 | `Tan2005` | 30.4 | 31.6 | 30.4 | 25.8 |
|2006| Yoon *et al.* | - | - | - | - | `Yoon2006` | 32.9 | 33.3 | 36.6 | 34.1 |
|2008| Shen *et al.* | 34.6 | 37.7 | 37.6 | 31.7 | `Shen2008` | 34.2 | 37.5 | 38.0 | 32.1 |
|2009| Shen and Cai | 34.8 | 37.6 | 36.9 | 34.0 | `Shen2009` | 34.9 | 37.6 | 36.7 | 34.0 |
|2010| Yang *et al.* | *37.2* | 38.0 | 37.6 | 32.2 | `Yang2010` | 36.5 | 37.5 | 36.2 | 33.5 |
|2013| Shen and Zheng | **37.3** | **39.3** | *38.9* | 34.1 | `Shen2013` | 37.5 | 38.3 | 38.2 | 32.7 |
|2015| Liu *et al.* | 33.4 | 37.6 | 35.1 | **34.5** | - | - | - | - | - |
|2016| Akashi and Okatani | 26.8 | 35.7 | 30.8 | 32.3 | `Akashi2016` | 32.7 | 35.9 | 34.8 | 34.0 |
|2016| Suo *et al.* | - | - | **40.4** | 34.2 | - | - | - | - | - |
|2017| Ren *et al.* | - | 38.0 | 37.7 | **34.5** | - | - | - | - | - |
|2018| Guo *et al.* | 35.7 | *39.1* | 36.4 | *34.4* | - | - | - | - | - |

#### Highest (self and peer-reported | reproduced) SSIM results

|Year| Method | *animals* | *cups* | *fruit* | *masks* | Reproduced | *animals* | *cups* | *fruit* | *masks* |
|:--:|--------------------|:---------:|:---------:|:---------:|:---------:|--------------------|:---------:|:------:|:-------:|:-------:|
|2005| Tan and Ikeuchi | 0.929 | 0.767 | 0.912 | 0.789 | Tan and Ikeuchi | 0.928 | 0.895 | 0.907 | 0.821 |
|2006| Yoon *et al.* | - | - | - | - | Yoon *et al.* | 0.980 | 0.961 | 0.961 | 0.953 |
|2008| Shen *et al.* | *0.974* | 0.962 | **0.961** | *0.943* | Shen *et al.* | 0.975 | 0.962 | 0.961 | 0.943 |
|2009| Shen and Cai | - | - | - | - | Shen and Cai | 0.985 | 0.970 | 0.962 | 0.961 |
|2010| Yang *et al.* | 0.970 | 0.941 | 0.939 | 0.899 | Yang *et al.* | 0.952 | 0.937 | 0.916 | 0.896 |
|2013| Shen and Zheng | 0.971 | **0.966** | *0.960* | 0.941 | Shen and Zheng | 0.985 | 0.964 | 0.958 | 0.935 |
|2015| Liu *et al.* | - | - | - | - | - | - | - | - | - |
|2016| Akashi and Okatani | 0.802 | 0.937 | 0.765 | 0.657 | Akashi and Okatani | 0.7340 | 0.9190 | 0.9010 | 0.8710 |
|2016| Suo *et al.* | - | - | - | - | - | - | - | - | - |
|2017| Ren *et al.* | 0.896 | 0.957 | 0.952 | 0.913 | - | - | - | - | - |
|2018| Guo *et al.* | **0.975** | *0.963* | 0.930 | **0.955** | - | - | - | - | - |
|Year| Method | *animals* | *cups* | *fruit* | *masks* | Reproduced | *animals* | *cups* | *fruit* | *masks* |
|:--:|--------------------|:---------:|:---------:|:---------:|:---------:|--------------|:---------:|:------:|:-------:|:-------:|
|2005| Tan and Ikeuchi | 0.929 | 0.767 | 0.912 | 0.789 | `Tan2005` | 0.928 | 0.895 | 0.907 | 0.821 |
|2006| Yoon *et al.* | - | - | - | - | `Yoon2006` | 0.980 | 0.961 | 0.961 | 0.953 |
|2008| Shen *et al.* | *0.974* | 0.962 | **0.961** | *0.943* | `Shen2008` | 0.975 | 0.962 | 0.961 | 0.943 |
|2009| Shen and Cai | - | - | - | - | `Shen2009` | 0.985 | 0.970 | 0.962 | 0.961 |
|2010| Yang *et al.* | 0.970 | 0.941 | 0.939 | 0.899 | `Yang2010` | 0.952 | 0.937 | 0.916 | 0.896 |
|2013| Shen and Zheng | 0.971 | **0.966** | *0.960* | 0.941 | `Shen2013` | 0.985 | 0.964 | 0.958 | 0.935 |
|2015| Liu *et al.* | - | - | - | - | - | - | - | - | - |
|2016| Akashi and Okatani | 0.802 | 0.937 | 0.765 | 0.657 | `Akashi2016` | 0.7340 | 0.9190 | 0.9010 | 0.8710 |
|2016| Suo *et al.* | - | - | - | - | - | - | - | - | - |
|2017| Ren *et al.* | 0.896 | 0.957 | 0.952 | 0.913 | - | - | - | - | - |
|2018| Guo *et al.* | **0.975** | *0.963* | 0.930 | **0.955** | - | - | - | - | - |

## References

<small>

1. R. T. Tan, “Specularity, Specular Reflectance,” in Computer Vision, Springer US, 2014, pp. 750–752 [Online]. Available: <http://dx.doi.org/10.1007/978-0-387-31439-6_538>

1. A. Artusi, F. Banterle, and D. Chetverikov, “A Survey of Specularity Removal Methods,” Computer Graphics Forum, vol. 30, no. 8, pp. 2208–2230, Aug. 2011 [Online]. Available: <http://dx.doi.org/10.1111/J.1467-8659.2011.01971.X>

1. H. A. Khan, J.-B. Thomas, and J. Y. Hardeberg, “Analytical Survey of Highlight Detection in Color and Spectral Images,” in Lecture Notes in Computer Science, Springer International Publishing, 2017, pp. 197–208 [Online]. Available: <http://dx.doi.org/10.1007/978-3-319-56010-6_17>

1. R. T. Tan and K. Ikeuchi, “Separating reflection components of textured surfaces using a single image,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 2, pp. 178–193, Feb. 2005 [Online]. Available: <http://dx.doi.org/10.1109/TPAMI.2005.36>

1. K. Yoon, Y. Choi, and I. S. Kweon, “Fast Separation of Reflection Components using a Specularity-Invariant Image Representation,” in 2006 International Conference on Image Processing, 2006 [Online]. Available: <http://dx.doi.org/10.1109/ICIP.2006.312650>

1. H.-L. Shen, H.-G. Zhang, S.-J. Shao, and J. H. Xin, “Chromaticity-based separation of reflection components in a single image,” Pattern Recognition, vol. 41, no. 8, pp. 2461–2469, Aug. 2008 [Online]. Available: <http://dx.doi.org/10.1016/J.PATCOG.2008.01.026>

1. H.-L. Shen and Q.-Y. Cai, “Simple and efficient method for specularity removal in an image,” Applied Optics, vol. 48, no. 14, p. 2711, May 2009 [Online]. Available: <http://dx.doi.org/10.1364/AO.48.002711>

1. Q. Yang, S. Wang, and N. Ahuja, “Real-Time Specular Highlight Removal Using Bilateral Filtering,” in Computer Vision – ECCV 2010, Springer Berlin Heidelberg, 2010, pp. 87–100 [Online]. Available: <http://dx.doi.org/10.1007/978-3-642-15561-1_7>

1. H.-L. Shen and Z.-H. Zheng, “Real-time highlight removal using intensity ratio,” Applied Optics, vol. 52, no. 19, p. 4483, Jun. 2013 [Online]. Available: <http://dx.doi.org/10.1364/AO.52.004483>

1. Y. Akashi and T. Okatani, “Separation of reflection components by sparse non-negative matrix factorization,” Computer Vision and Image Understanding, vol. 146, pp. 77–85, May 2016 [Online]. Available: <http://dx.doi.org/10.1016/j.cviu.2015.09.001>

1. T. Yamamoto and A. Nakazawa, “General Improvement Method of Specular Component Separation Using High-Emphasis Filter and Similarity Function,” ITE Transactions on Media Technology and Applications, vol. 7, no. 2, pp. 92–102, 2019 [Online]. Available: <http://dx.doi.org/10.3169/mta.7.92>

1. R. Grosse, M. K. Johnson, E. H. Adelson, and W. T. Freeman, “Ground truth dataset and baseline evaluations for intrinsic image algorithms,” in 2009 IEEE 12th International Conference on Computer Vision, 2009 [Online]. Available: <http://dx.doi.org/10.1109/ICCV.2009.5459428>
1. R. T. Tan, “Specularity, Specular Reflectance,” in Computer Vision, Springer US, 2014, pp. 750–752 [Online]. Available: http://dx.doi.org/10.1007/978-0-387-31439-6_538
1. A. Artusi, F. Banterle, and D. Chetverikov, “A Survey of Specularity Removal Methods,” Computer Graphics Forum, vol. 30, no. 8, pp. 2208–2230, Aug. 2011 [Online]. Available: http://dx.doi.org/10.1111/J.1467-8659.2011.01971.X
1. H. A. Khan, J.-B. Thomas, and J. Y. Hardeberg, “Analytical Survey of Highlight Detection in Color and Spectral Images,” in Lecture Notes in Computer Science, Springer International Publishing, 2017, pp. 197–208 [Online]. Available: http://dx.doi.org/10.1007/978-3-319-56010-6_17
1. R. T. Tan and K. Ikeuchi, “Separating reflection components of textured surfaces using a single image,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 2, pp. 178–193, Feb. 2005 [Online]. Available: http://dx.doi.org/10.1109/TPAMI.2005.36
1. K. Yoon, Y. Choi, and I. S. Kweon, “Fast Separation of Reflection Components using a Specularity-Invariant Image Representation,” in 2006 International Conference on Image Processing, 2006 [Online]. Available: http://dx.doi.org/10.1109/ICIP.2006.312650
1. H.-L. Shen, H.-G. Zhang, S.-J. Shao, and J. H. Xin, “Chromaticity-based separation of reflection components in a single image,” Pattern Recognition, vol. 41, no. 8, pp. 2461–2469, Aug. 2008 [Online]. Available: http://dx.doi.org/10.1016/J.PATCOG.2008.01.026
1. H.-L. Shen and Q.-Y. Cai, “Simple and efficient method for specularity removal in an image,” Applied Optics, vol. 48, no. 14, p. 2711, May 2009 [Online]. Available: http://dx.doi.org/10.1364/AO.48.002711
1. Q. Yang, S. Wang, and N. Ahuja, “Real-Time Specular Highlight Removal Using Bilateral Filtering,” in Computer Vision – ECCV 2010, Springer Berlin Heidelberg, 2010, pp. 87–100 [Online]. Available: http://dx.doi.org/10.1007/978-3-642-15561-1_7
1. H.-L. Shen and Z.-H. Zheng, “Real-time highlight removal using intensity ratio,” Applied Optics, vol. 52, no. 19, p. 4483, Jun. 2013 [Online]. Available: http://dx.doi.org/10.1364/AO.52.004483
1. Y. Akashi and T. Okatani, “Separation of reflection components by sparse non-negative matrix factorization,” Computer Vision and Image Understanding, vol. 146, pp. 77–85, May 2016 [Online]. Available: http://dx.doi.org/10.1016/j.cviu.2015.09.001
1. T. Yamamoto and A. Nakazawa, “General Improvement Method of Specular Component Separation Using High-Emphasis Filter and Similarity Function,” ITE Transactions on Media Technology and Applications, vol. 7, no. 2, pp. 92–102, 2019 [Online]. Available: http://dx.doi.org/10.3169/mta.7.92
1. R. Grosse, M. K. Johnson, E. H. Adelson, and W. T. Freeman, “Ground truth dataset and baseline evaluations for intrinsic image algorithms,” in 2009 IEEE 12th International Conference on Computer Vision, 2009 [Online]. Available: http://dx.doi.org/10.1109/ICCV.2009.5459428

</small>
6 changes: 3 additions & 3 deletions SIHR.m
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
% SIHR % run it for a one-time session path setup
%
% API:
% J = im2double(imread('synth.ppm')); % input image
% J = im2double(imread('toys.ppm')); % input image
% J_d = Yang2010(J); % call AuthorYEAR method
% % e.g. Yang2010
% imshow([J, J_d, J - J_d]) % display result
Expand Down Expand Up @@ -58,8 +58,8 @@
if (is_octave)
assert(isempty(pkg('list', 'image')) == 0) % && ...
% isempty(pkg('list', 'statistics')) == 0)
pkg unload image statistics
pkg load image statistics
pkg unload image % statistics
pkg load image % statistics
else
assert(isequal(license('test', 'image_toolbox'), 1)) % && ...
% isequal(license('test', 'statistics_toolbox'), 1))
Expand Down
Loading

0 comments on commit 854586f

Please sign in to comment.