Skip to content

vksastry/model-based-rl-1

Repository files navigation

MuZero

A PyTorch implementation of MuZero from Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model.

  • Is distributed through Ray
  • Handles one/two-player games in style of OpenAI Gym
  • Live training results are logged with Tensorboard
  • Evaluate and visualize agent performance at any time.

Trained Examples

Breakout-ramNoFrameskip-v4

Random Trained

Tensorboard training results

Pong-ramNoFrameskip-v4

Random Trained

Tensorboard training results

LunarLander-v2

Random Trained

Tensorboard training results

Tic-Tac-Toe

Tensorboard training results


Installation:

git clone https://github.com/JimOhman/model-based-rl.git
cd model-based-rl
pip install -r requirements.txt

Reproduce examples:

  • LunarLander-v2: python train.py --environment LunarLander-v2 --architecture FCNetwork --num_actors 7 --fixed_temperatures 1.0 0.8 0.7 0.5 0.3 0.2 0.1 --td_steps 1000 --max_history_length 1000 --group_tag my_group_tag --run_tag my_run_tag

  • Pong-ramNoFrameskip-v4: python train.py --environment Pong-ramNoFrameskip-v4 --architecture FCNetwork --num_actors 7 --fixed_temperatures 1.0 0.8 0.7 0.5 0.3 0.2 0.1 --td_steps 10 --obs_range 0 255 --norm_obs --sticky_actions 4 --noop_reset --episode_life --group_tag my_group_tag --run_tag my_run_tag

  • Breakout-ramNoFrameskip-v4: python train.py --environment Breakout-ramNoFrameskip-v4 --architecture FCNetwork --num_actors 7 --fixed_temperatures 1.0 0.8 0.7 0.5 0.3 0.2 0.1 --td_steps 10 --window_size 200000 --batch_size 512 --obs_range 0 255 --norm_obs --sticky_actions 4 --noop_reset --episode_life --fire_reset --clip_rewards --group_tag my_group_tag --run_tag my_run_tag

  • Tic-Tac-Toe: python train.py --environment tictactoe --two_players --architecture FCNetwork --num_actors 7 --fixed_temperatures 1.0 0.8 0.7 0.5 0.3 0.2 0.1 --td_steps 10 --discount 1 --known_bounds -1 1 --stored_before_train 20000 --group_tag my_group_tag --run_tag my_run_tag

See live training results with tensorboard:

tensorboard --logdir model-based-rl/runs/(environment)/(group_tag)/(run_tag)

Evaluate saved networks:

python evaluate.py --saves_dir model-based-rl/runs/(environment)/(group_tag)/(run_tag)/saves/ --nets (eg. 1000, 2000) --render --plot_summary --include_policy

Description of arguments:

Network arguments Description
--architecture {FCNetwork, MuZeroNetwork, TinyNetwork, HopfieldNetwork, AttentionNetwork} Name of an implemented network architecture
--value_support Min and max of the value support (default: -15 15)
--reward_support Min and max of the reward support (default: -15 15)
--no_support Turns off support
--seed Sets the seed for the training run (default: randomly sampled from [0, 10000]
Environment arguments Description
--clip_rewards Clip rewards to [-1, 1]
--stack_obs Stack given amount of consecutive observations to a new observation (default: 1)
--obs_range Specify the (min, max) range for the dimensions of the observation (default: None)
--norm_obs Normalize observations based on the given --obs_range
--sticky_actions Apply same action a given amount of times (default: 1)
--episode_life Prevent value bootstrapping after a loss of a life in Atari games
--fire_reset Apply the FIRE action after a reset call in Atari games
--noop_reset Apply the NOOP action a random amount of times between [0, --noop_max] after a reset call in Atari games
--noop_max Change the maximum for --noop_reset (default: 30)
--two_players Specify that the environment is for two-players
Self-Play arguments Description
--num_actors Number of self-play actors to launch (default: 7)
--max_steps Maximum amount of steps per game (default: 40000)
--num_simulations Amount of MCTS simulations at each step (default: 30)
--max_history_length Maximum length of game histories sent to the replay buffer (default: 500)
--visit_softmax_temperatures List of policy temperatures to apply throughout training (default: [1.0, 0.5, 0.25])
--visit_softmax_steps List of training steps to change to the next temperature in --visit_softmax_temperatures (default: [15000, 30000])
--fixed_temperatures List of fixed temperatures to each actor, instead of decaying (default: None)
--root_dirichlet_alpha Controls the shape of dirichlet noise added to the root node (default: 0.25)
--root_exploration_fraction Fraction of dirichlet noise added to the root node (default: 0.25)
--pb_c_base Base value of cpuct in the UCB formula (default: 19652)
--pb_c_init Initial value of cpuct in the UCB formula (default: 1.25)
--known_bounds Min and Max known bounds for the value function. (default: [None, None])
Prioritized Experience Replay arguments Description
--window_size Max amount of experiences to store (default: 100000)
--window_step Step size to increase window size (default: None)
--epsilon Lowest possible priority (default: 0.01)
--alpha Scale priorities by this power (default: 1.)
--beta Corrects for the sampling bias (default: 1.)
--beta_increment_per_sampling Increases beta towards 1 with each sample (default: 0.001)
Training arguments Description
--training_steps Amount of training steps to complete (default: 100000000)
--policy_loss The loss function for the policy (default: CrossEntropyLoss)
--scalar_loss The loss function for value and reward, used if --no_support (default: MSE)
--num_unroll_steps Amount of consecutive experiences used per backpropagation (default: 5)
--td_steps Time-difference steps to use when calculating value targets (default: 10)
--batch_size Amount of samples per batch (default: 256)
--discount Discount for the value targets (default: 0.997)
--batches_per_fetch Amount of batches to fetch in parallel from the replay buffer (default: 15)
--stored_before_train Amount of experiences stored in the replay buffer before the learner starts (default: 50000)
--clip_grad Maximum norm of the gradients (default: None)
--no_target_transform Turns off value and reward target transforms
--send_weights_frequency Training steps before weights are sent from the learner (default: 500)
--weight_sync_frequency Experiences before each actor syncs their weights with the learner (default: 1000)
--optimizer {SGD, RMSprop, Adam, AdamW} Name of the optimizer to use (default: AdamW)
--momentum Amount of momentum for optimizers that use it (default: 0.9)
--weight_decay Amount of weight decay specified to the optimizer (default: 0.0001)
--lr_scheduler {ExponentialLR, MuZeroLR, WarmUpLR} Name of a learning rate scheduler (default: None)
--lr_init Initial learning rate (default: 0.0008)
--lr_decay_rate Decay rate for learning rate schedulers that use it (default: 0.01)
--lr_decay_steps Training steps until the lr has been reduced by a factor of --decay_rate (default: 100000)
Saving and Loading arguments Description
--save_state_frequency Training steps before agents state is saved (default: 1000)
--load_state Load and continue training from a saved state(default: None)
--override_loaded_config Override the loaded config by the current
Evalutation arguments Description
--saves_dir Path to the saves directory which has the agents states (required)
--nets Name of the states in the given --saves_dir (required)
--num_games Number of games to evaluate on (default: 1)
--plot_summary Plot useful metrics of the games played
--include_policy Include the networks policy in --plot_summary
--include_bounds Include standard deviation bounds in --plot_summary
--detailed_label Add more information to the legends for --plot_summary
--smooth A value to smoothen metrics for --plot_summary (default: None)
--apply_mcts_actions Apply the given amount of actions from each MCTS (default: 1)
--parallel Evaluate multiple games in parallel
--verbose Prints useful metrics during the games
--render Render the games
--save_gif_as Save a rendered game as a gif given the name
--sleep Slow down the play, given in seconds (default: 0)
--save_mcts Save a visualization of the mcts during each step of the game
--save_mcts_after_step Modify the step after --save_mcts should start (default: 0)
--temperatures List of temperatures to compare between in evaluation (default: None)
--only_prior {0, 1} Set as 1 to only use the networks prior to play (default: 0)
--only_value {0, 1} Set as 1 to only use networks value function to play (default: 0)
--use_exploration_noise {0, 1} Set to 1 to include dirichlet noise during evaluation (default: 0)
--random_opp {-1, 1} For a two-player game, make one opponent random (default: None)
--human_opp {-1, 1} For a two-player game, take control of either player (default: None)
Logging arguments Description
--group_tag An tag used to group training runs (default: None)
--run_tag A tag specifying the training run (default: current-date)
--create_run_tag_from Specified arguments will create a --run_tag with a nested folder structure (default: None)
Debugging arguments Description
--debug Logs the weight distributions and their norm

About

My new model-based-rl

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages