Skip to content

vorpal-research/TIP

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TIP

TIP is a tiny imperative programming language aimed at teaching the fundamental concepts of static program analysis. This code accompanies the lecture notes on Static Program Analysis.

Getting started

Prerequisites:

We suggest you to use IntelliJ for working on TIP, but all the following options are viable.

IntelliJ IDEA

  • Install the Scala plugin in IntelliJ. (Follow the instructions on how to install IntelliJ plugins, search for "Scala" in the plugins menu.)
  • Open a terminal, navigate to the directory where you want to store the TIP project.
  • Run git clone https://github.com/cs-au-dk/TIP.git tip
  • In IntelliJ, click File -> New -> Project from Existing Sources..., choose your new 'tip' directory, click OK, choose 'Import project from external model', then 'sbt' and 'Next'.
  • Select a 'Project JDK' (1.8 or newer), and make sure 'builds' is enabled under 'sbt shell", 'use for' before clicking 'Finish'.
  • In the IntelliJ Project overview, move the contents of 'ideafiles' into '.idea', overwriting the existing files.
  • Now reload the project by clicking File -> Invalidate Caches / Restart... -> Just Restart. (Yes, this step is necessary, because of a bug in IntelliJ.)
  • Right-click on Tip.scala in src/tip, then select "Run 'Tip'". To supply arguments, use Run... -> Edit Configurations in the Run menu.

IntelliJ Scala bugs

Important: if you experience spurious type errors reported by IntelliJ for code involving Scala implicits, try disabling type-aware highlighting by clicking on the small [T] icon on the bottom right corner of the window.

IntelliJ performance

If your IntelliJ has high-CPU and high-memory peaks while editing, the following tweaks might be useful:

  • Disable type-aware highlighting by clicking on the small [T] icon on the bottom right corner of the window.
  • Go to Help -> Edit Custom VM Options and increase the JVM memory at least with the following values:
-Xms500m -Xmx1500m
  • If still nothing works, try File -> Power Save Mode.

IntelliJ Import optimization

IntelliJ offers an option to optimize imports upon commit. We suggest not to use that feature, as it may remove needed imports thereby breaking compilation.

Eclipse

  • Check that you have installed the scala-plugin for Eclipse.
  • To run TIP from within Eclipse, feed the arguments into the Run Arguments dialog.

Working from the command-line

A wrapper command tip (tip.bat for Windows) is provided to compile and run TIP with the given arguments.

Example:

./tip -run examples/fib.tip

To build:

sbt compile

Command-line arguments

Usage:

tip <options> <source> [out]

where <source> can be a file or a directory containing .tip files and [out] is an output directory (default: ./out).

To see the possible options, run tip without options. Option -verbose is recommended when developing and testing analyses.

Visualizing control flow graphs and analysis results

The main function Tip.scala emits control flow graphs and analysis results as ".dot" files that can be processed by Graphviz to produce images, for example using the Graphviz dot command-line tool:

dot -O -Tpng out/example.tip__sign.dot

Program normalization

Some analyses require the programs use restricted subsets of TIP. The following kinds of normalization can be performed automatically:

  • -normalizecalls: normalizes function calls to be top-level only and such that arguments are identifiers (e.g. id1 = id2(id3,id4))
  • -normalizereturns: normalizes return expressions to be identifiers (e.g. return id)
  • -normalizepointers: normalizes pointer operations to primitive statements (id = alloc P where P is null or an integer constant, id1 = &id2, id1 = id2, id1 = *id2, *id1 = id2, orid = null)

If one or more of these options are enabled, the normalized program is printed to e.g. out/example.tip__normalized.tip.

Help to Scala novices

This implementation takes advantage of many cool Scala language features that allow the code to be concise and flexible. Many of these language features are quite intuitive and easy to understand for anyone familiar with object oriented and functional programming, even without prior knowledge of Scala. Still, the following language features deserve some extra attention:

Tutorials and extensive documentation for Scala are available at http://docs.scala-lang.org/.

Useful tips:

  • You can see what type Scala has inferred for an expression by selecting the expression and pressing Alt+Equals (depending on keyboard settings in Settings -> Keymap -> Scala -> Type Info).
  • You can see what implicit conversion Scala is applying by enabling View -> Show Implicit Hints (and View -> Expand Implicit Hints, for full information).

Code style

To avoid using inconsistent code styles and meaningless diffs caused by IDE reformatting we use scalafmt.

The code is automatically formatted upon compilation by SBT.

Before committing, please double-check that all the code is in the right format by executing sbt scalafmt. To automatically format when the file is saved, go to File -> Settings..., under 'Editor', 'Code Style', 'Scala', make sure 'Scalafmt' is selected under 'Formatter'. (Unfortunately the formatting is only triggered when the file is explicitly saved with Ctrl-S.)

Authors

with contributions from

Releases

No releases published

Packages

No packages published

Languages

  • Scala 100.0%