Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CSTR Re-Scaling #1542

Draft
wants to merge 8 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
121 changes: 121 additions & 0 deletions watertap/unit_models/aeration_tank.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
from idaes.core import (
declare_process_block_class,
)
from idaes.core.scaling import CustomScalerBase, ConstraintScalingScheme


from watertap.unit_models.cstr_injection import (
Expand All @@ -30,12 +31,132 @@
__author__ = "Adam Atia"


class AerationTankScaler(CustomScalerBase):
"""
Default modular scaler for the aeration tank unit model.

This Scaler relies on the associated property and reaction packages,
either through user provided options (submodel_scalers argument) or by default
Scalers assigned to the packages.
"""

DEFAULT_SCALING_FACTORS = {
"volume": 1e-3,
}

def variable_scaling_routine(
self, model, overwrite: bool = False, submodel_scalers: dict = None
):
"""
Routine to apply scaling factors to variables in model.

Args:
model: model to be scaled
overwrite: whether to overwrite existing scaling factors
submodel_scalers: dict of Scalers to use for sub-models, keyed by submodel local name

Returns:
None
"""
# Call scaling methods for sub-models
self.call_submodel_scaler_method(
submodel=model.control_volume.properties_in,
method="variable_scaling_routine",
submodel_scalers=submodel_scalers,
overwrite=overwrite,
)
self.propagate_state_scaling(
target_state=model.control_volume.properties_out,
source_state=model.control_volume.properties_in,
overwrite=overwrite,
)

self.call_submodel_scaler_method(
submodel=model.control_volume.properties_out,
method="variable_scaling_routine",
submodel_scalers=submodel_scalers,
overwrite=overwrite,
)
self.call_submodel_scaler_method(
submodel=model.control_volume.reactions,
method="variable_scaling_routine",
submodel_scalers=submodel_scalers,
overwrite=overwrite,
)

# Scaling control volume variables
self.scale_variable_by_default(
model.control_volume.volume[0], overwrite=overwrite
)

def constraint_scaling_routine(
self, model, overwrite: bool = False, submodel_scalers: dict = None
):
"""
Routine to apply scaling factors to constraints in model.

Submodel Scalers are called for the property and reaction blocks. All other constraints
are scaled using the inverse maximum scheme.

Args:
model: model to be scaled
overwrite: whether to overwrite existing scaling factors
submodel_scalers: dict of Scalers to use for sub-models, keyed by submodel local name

Returns:
None
"""
# Call scaling methods for sub-models
self.call_submodel_scaler_method(
submodel=model.control_volume.properties_in,
method="constraint_scaling_routine",
submodel_scalers=submodel_scalers,
overwrite=overwrite,
)
self.call_submodel_scaler_method(
submodel=model.control_volume.properties_out,
method="constraint_scaling_routine",
submodel_scalers=submodel_scalers,
overwrite=overwrite,
)
self.call_submodel_scaler_method(
submodel=model.control_volume.reactions,
method="constraint_scaling_routine",
submodel_scalers=submodel_scalers,
overwrite=overwrite,
)

# Scale unit level constraints
if hasattr(model, "eq_hydraulic_retention_time"):
self.scale_constraint_by_nominal_value(
model.eq_hydraulic_retention_time[0],
scheme=ConstraintScalingScheme.inverseMaximum,
overwrite=overwrite,
)

if hasattr(model, "eq_mass_transfer"):
self.scale_constraint_by_nominal_value(
model.eq_mass_transfer[0],
scheme=ConstraintScalingScheme.inverseMaximum,
overwrite=overwrite,
)

if hasattr(model, "eq_electricity_consumption"):
self.scale_constraint_by_nominal_value(
model.eq_electricity_consumption[0],
scheme=ConstraintScalingScheme.inverseMaximum,
overwrite=overwrite,
)


@declare_process_block_class("AerationTank")
class AerationTankData(CSTR_InjectionData):
"""
CSTR Unit Model with Injection Class
"""

default_scaler = AerationTankScaler

CONFIG = CSTR_InjectionData.CONFIG()
CONFIG.electricity_consumption = ElectricityConsumption.calculated
CONFIG.get("has_aeration")._domain = In([True])
Expand Down
107 changes: 107 additions & 0 deletions watertap/unit_models/cstr.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
from idaes.models.unit_models.cstr import CSTRData as CSTRIDAESData

import idaes.logger as idaeslog
from idaes.core.scaling import CustomScalerBase, ConstraintScalingScheme

from pyomo.environ import (
Constraint,
Expand All @@ -38,12 +39,118 @@
_log = idaeslog.getLogger(__name__)


class CSTRScaler(CustomScalerBase):
"""
Default modular scaler for CSTR.

This Scaler relies on the associated property and reaction packages,
either through user provided options (submodel_scalers argument) or by default
Scalers assigned to the packages.
"""

DEFAULT_SCALING_FACTORS = {
"volume": 1e-3,
}

def variable_scaling_routine(
self, model, overwrite: bool = False, submodel_scalers: dict = None
):
"""
Routine to apply scaling factors to variables in model.

Args:
model: model to be scaled
overwrite: whether to overwrite existing scaling factors
submodel_scalers: dict of Scalers to use for sub-models, keyed by submodel local name

Returns:
None
"""
# Call scaling methods for sub-models
self.call_submodel_scaler_method(
submodel=model.control_volume.properties_in,
method="variable_scaling_routine",
submodel_scalers=submodel_scalers,
overwrite=overwrite,
)
self.propagate_state_scaling(
target_state=model.control_volume.properties_out,
source_state=model.control_volume.properties_in,
overwrite=overwrite,
)

self.call_submodel_scaler_method(
submodel=model.control_volume.properties_out,
method="variable_scaling_routine",
submodel_scalers=submodel_scalers,
overwrite=overwrite,
)
self.call_submodel_scaler_method(
submodel=model.control_volume.reactions,
method="variable_scaling_routine",
submodel_scalers=submodel_scalers,
overwrite=overwrite,
)

# Scaling control volume variables
self.scale_variable_by_default(
model.control_volume.volume[0], overwrite=overwrite
)

def constraint_scaling_routine(
self, model, overwrite: bool = False, submodel_scalers: dict = None
):
"""
Routine to apply scaling factors to constraints in model.

Submodel Scalers are called for the property and reaction blocks. All other constraints
are scaled using the inverse maximum scheme.

Args:
model: model to be scaled
overwrite: whether to overwrite existing scaling factors
submodel_scalers: dict of Scalers to use for sub-models, keyed by submodel local name

Returns:
None
"""
# Call scaling methods for sub-models
self.call_submodel_scaler_method(
submodel=model.control_volume.properties_in,
method="constraint_scaling_routine",
submodel_scalers=submodel_scalers,
overwrite=overwrite,
)
self.call_submodel_scaler_method(
submodel=model.control_volume.properties_out,
method="constraint_scaling_routine",
submodel_scalers=submodel_scalers,
overwrite=overwrite,
)
self.call_submodel_scaler_method(
submodel=model.control_volume.reactions,
method="constraint_scaling_routine",
submodel_scalers=submodel_scalers,
overwrite=overwrite,
)

# Scale unit level constraints
if hasattr(model, "CSTR_retention_time"):
self.scale_constraint_by_nominal_value(
model.CSTR_retention_time[0],
scheme=ConstraintScalingScheme.inverseMaximum,
overwrite=overwrite,
)


@declare_process_block_class("CSTR")
class CSTRData(CSTRIDAESData):
"""
CSTR unit block for BSM2
"""

default_scaler = CSTRScaler

CONFIG = CSTRIDAESData.CONFIG()

def build(self):
Expand Down
Loading
Loading