-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[example] Add yolovc PCB attack - UAP
- Loading branch information
1 parent
39d5741
commit b5c2820
Showing
1 changed file
with
154 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
import cv2 | ||
import datetime | ||
import numpy as np | ||
|
||
import tensorflow as tf | ||
tf.compat.v1.disable_eager_execution() | ||
import keras.backend as K | ||
|
||
from what.models.detection.datasets.coco import COCO_CLASS_NAMES | ||
from what.models.detection.utils.box_utils import draw_bounding_boxes | ||
from what.models.detection.yolo.utils.yolo_utils import yolo_process_output, yolov4_anchors | ||
|
||
from what.attacks.detection.yolo.PCB import PCBAttack | ||
from what.utils.resize import bilinear_resize | ||
import what.utils.logger as log | ||
|
||
from what.cli.model import * | ||
from what.utils.file import get_file | ||
from what.utils.logger import TensorBoardLogger | ||
|
||
# Loggingc | ||
logger = log.get_logger(__name__) | ||
|
||
CARLA_VIDEO_INDEX = 3 | ||
|
||
# Tensorboard | ||
pcb_log_dir = f'logs/pcb-universal/carla_{CARLA_VIDEO_INDEX:04d}/{datetime.datetime.now().strftime("%Y%m%d-%H%M%S")}' | ||
tb = TensorBoardLogger(pcb_log_dir) | ||
|
||
n_iteration = 100 | ||
|
||
# Target Model | ||
what_yolov4_model_list = what_model_list[4:6] | ||
|
||
# Check what_model_list for all supported models | ||
index = 0 | ||
|
||
custom_objects = { | ||
'mish': lambda x: x * K.tanh(K.softplus(x)), | ||
'tf': tf | ||
} | ||
|
||
# Download the model first if not exists | ||
WHAT_YOLOV4_MODEL_FILE = what_yolov4_model_list[index][WHAT_MODEL_FILE_INDEX] | ||
WHAT_YOLOV4_MODEL_URL = what_yolov4_model_list[index][WHAT_MODEL_URL_INDEX] | ||
WHAT_YOLOV4_MODEL_HASH = what_yolov4_model_list[index][WHAT_MODEL_HASH_INDEX] | ||
|
||
if not os.path.isfile(os.path.join(WHAT_MODEL_PATH, WHAT_YOLOV4_MODEL_FILE)): | ||
get_file(WHAT_YOLOV4_MODEL_FILE, | ||
WHAT_MODEL_PATH, | ||
WHAT_YOLOV4_MODEL_URL, | ||
WHAT_YOLOV4_MODEL_HASH) | ||
|
||
if __name__ == '__main__': | ||
# Read video frames | ||
input_video = [] | ||
|
||
cap = cv2.VideoCapture(f"carla/{CARLA_VIDEO_INDEX:04d}.mp4") | ||
success, image = cap.read() | ||
while success: | ||
input_video.append(image) | ||
success,image = cap.read() | ||
cap.release() | ||
|
||
classes = COCO_CLASS_NAMES | ||
|
||
colors = np.random.uniform(0, 255, size=(len(classes), 3)) | ||
|
||
logger.info(f"Read {len(input_video)} images") | ||
|
||
# random.shuffle(input_video) | ||
|
||
x_train = np.array(input_video[:int(len(input_video))]) | ||
|
||
# Adversarial Attack | ||
model_path = os.path.join(WHAT_MODEL_PATH, what_yolov4_model_list[index][WHAT_MODEL_FILE_INDEX]) | ||
attack = PCBAttack(os.path.join(WHAT_MODEL_PATH, WHAT_YOLOV4_MODEL_FILE), "multi_untargeted", COCO_CLASS_NAMES, decay=0.99, custom_objects=custom_objects) | ||
attack.fixed = False | ||
|
||
logger.info(f"Train: {len(x_train)}") | ||
|
||
origin_outs = [] | ||
|
||
for i in range(len(x_train)): | ||
origin_cv_image = cv2.cvtColor(x_train[i, :, :, :], cv2.COLOR_BGR2RGB) | ||
|
||
# For YOLO, the input pixel values are normalized to [0, 1] | ||
input_cv_image = cv2.resize(origin_cv_image, (416, 416)) | ||
input_cv_image = np.array(input_cv_image).astype(np.float32) / 255.0 | ||
|
||
# Yolo inference | ||
outs = attack.sess.run(attack.model.output, feed_dict={attack.model.input:np.array([input_cv_image])}) | ||
|
||
origin_outs.append(outs) | ||
|
||
for n in range(n_iteration): | ||
|
||
res_mean_list = [] | ||
boxes_list = [] | ||
|
||
for i in range(len(x_train)): | ||
logger.info(f"Iteration: {n}, Frame: {i}") | ||
|
||
origin_cv_image = cv2.cvtColor(x_train[i, :, :, :], cv2.COLOR_BGR2RGB) | ||
|
||
# For YOLO, the input pixel values are normalized to [0, 1] | ||
input_cv_image = cv2.resize(origin_cv_image, (416, 416)) | ||
|
||
input_cv_image = np.array(input_cv_image).astype(np.float32) / 255.0 | ||
|
||
# Yolo inference | ||
input_cv_image, outs = attack.attack(input_cv_image) | ||
boxes, labels, probs = yolo_process_output(outs, yolov4_anchors, len(classes)) | ||
|
||
boxes_list.append(len(boxes)) | ||
|
||
res_list = [] | ||
for out, origin_out in zip(outs, origin_outs[i]): | ||
out = out.reshape((-1, 5 + len(classes))) | ||
origin_out = origin_out.reshape((-1, 5 + len(classes))) | ||
|
||
res = np.mean(out[:, 4] - origin_out[:, 4]) | ||
res_list.append(res) | ||
|
||
res_mean_list.append(np.mean(res_list)) | ||
|
||
# Draw bounding boxes | ||
origin_cv_image = cv2.cvtColor(origin_cv_image, cv2.COLOR_RGB2BGR) | ||
origin_cv_image = origin_cv_image.astype(np.float32) / 255.0 | ||
height, width, _ = origin_cv_image.shape | ||
noise = attack.noise | ||
noise_r = bilinear_resize(noise[:, :, 0], height, width) | ||
noise_g = bilinear_resize(noise[:, :, 1], height, width) | ||
noise_b = bilinear_resize(noise[:, :, 2], height, width) | ||
noise = np.dstack((noise_r, noise_g, noise_b)) | ||
|
||
origin_cv_image = origin_cv_image + noise | ||
origin_cv_image = np.clip(origin_cv_image, 0, 1) | ||
|
||
origin_cv_image = (origin_cv_image * 255.0).astype(np.uint8) | ||
out_img = draw_bounding_boxes(origin_cv_image, boxes, labels, classes, probs); | ||
|
||
cv2.namedWindow("result", cv2.WINDOW_NORMAL) | ||
cv2.imshow("result", out_img) | ||
|
||
if (cv2.waitKey(1) & 0xFF == ord('q')): | ||
break | ||
|
||
tb.log_scalar('mean confidence increase', np.mean(res_mean_list), n) | ||
tb.log_scalar('boxes', np.mean(boxes_list), n) | ||
|
||
if (n+1) == 1 or (n+1) == 5 or (n+1) % 10 == 0: | ||
logger.info(f"Perturbation saved to noise_{CARLA_VIDEO_INDEX:04d}_{n}.npy") | ||
np.save(f"noise/noise_pcb_{CARLA_VIDEO_INDEX:04d}_{n}.npy", attack.noise) |