Skip to content

Latest commit

 

History

History
122 lines (91 loc) · 4.1 KB

README_CN.md

File metadata and controls

122 lines (91 loc) · 4.1 KB

简体中文 | English

C++推理

在运行demo前,需确认以下两个步骤

本文档以 PaddleClas 分类模型 MobileNetV2 为例展示CPU上的推理示例

1. 获取模型

wget https://bj.bcebos.com/fastdeploy/models/mobilenetv2.tgz
tar xvf mobilenetv2.tgz

2. 配置后端

如下C++代码保存为infer_paddle_onnxruntime.cc

#include "fastdeploy/runtime.h"

namespace fd = fastdeploy;

int main(int argc, char* argv[]) {
  std::string model_file = "mobilenetv2/inference.pdmodel";
  std::string params_file = "mobilenetv2/inference.pdiparams";

  // setup option
  fd::RuntimeOption runtime_option;
  runtime_option.SetModelPath(model_file, params_file, fd::ModelFormat::PADDLE);
  runtime_option.UseOrtBackend();
  runtime_option.SetCpuThreadNum(12);
  // init runtime
  std::unique_ptr<fd::Runtime> runtime =
      std::unique_ptr<fd::Runtime>(new fd::Runtime());
  if (!runtime->Init(runtime_option)) {
    std::cerr << "--- Init FastDeploy Runitme Failed! "
              << "\n--- Model:  " << model_file << std::endl;
    return -1;
  } else {
    std::cout << "--- Init FastDeploy Runitme Done! "
              << "\n--- Model:  " << model_file << std::endl;
  }
  // init input tensor shape
  fd::TensorInfo info = runtime->GetInputInfo(0);
  info.shape = {1, 3, 224, 224};

  std::vector<fd::FDTensor> input_tensors(1);
  std::vector<fd::FDTensor> output_tensors(1);

  std::vector<float> inputs_data;
  inputs_data.resize(1 * 3 * 224 * 224);
  for (size_t i = 0; i < inputs_data.size(); ++i) {
    inputs_data[i] = std::rand() % 1000 / 1000.0f;
  }
  input_tensors[0].SetExternalData({1, 3, 224, 224}, fd::FDDataType::FP32, inputs_data.data());

  //get input name
  input_tensors[0].name = info.name;

  runtime->Infer(input_tensors, &output_tensors);

  output_tensors[0].PrintInfo();
  return 0;
}

加载完成,会输出提示如下,说明初始化的后端,以及运行的硬件设备

[INFO] fastdeploy/fastdeploy_runtime.cc(283)::Init	Runtime initialized with Backend::OrtBackend in device Device::CPU.

3. 准备CMakeLists.txt

FastDeploy中包含多个依赖库,直接采用g++或编译器编译较为繁杂,推荐使用cmake进行编译配置。示例配置如下,

PROJECT(runtime_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.12)

# 指定下载解压后的fastdeploy库路径
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")

include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)

# 添加FastDeploy依赖头文件
include_directories(${FASTDEPLOY_INCS})

add_executable(runtime_demo ${PROJECT_SOURCE_DIR}/infer_onnx_openvino.cc)
# 添加FastDeploy库依赖
target_link_libraries(runtime_demo ${FASTDEPLOY_LIBS})

4. 编译可执行程序

打开命令行终端,进入infer_paddle_onnxruntime.ccCMakeLists.txt所在的目录,执行如下命令

mkdir build & cd build
cmake .. -DFASTDEPLOY_INSTALL_DIR=$fastdeploy_cpp_sdk
make -j

fastdeploy_cpp_sdk 为FastDeploy C++部署库路径

编译完成后,使用如下命令执行可得到预测结果

./runtime_demo

执行时如提示error while loading shared libraries: libxxx.so: cannot open shared object file: No such file...,说明程序执行时没有找到FastDeploy的库路径,可通过执行如下命令,将FastDeploy的库路径添加到环境变量之后,重新执行二进制程序。

source /Path/to/fastdeploy_cpp_sdk/fastdeploy_init.sh

本示例代码在各平台(Windows/Linux/Mac)上通用,但编译过程仅支持(Linux/Mac),Windows上使用msbuild进行编译,具体使用方式参考Windows平台使用FastDeploy C++ SDK

其它文档