Skip to content

Latest commit

 

History

History
 
 

python

English | 简体中文

Python Inference

Before running demo, the following two steps need to be confirmed:

This document shows an inference example on the CPU using the PaddleClas classification model MobileNetV2 as an example.

1. Obtaining the model

import fastdeploy as fd

model_url = "https://bj.bcebos.com/fastdeploy/models/mobilenetv2.tgz"
fd.download_and_decompress(model_url, path=".")

2. Backend Configuration

option = fd.RuntimeOption()

option.set_model_path("mobilenetv2/inference.pdmodel",
                      "mobilenetv2/inference.pdiparams")

# **** CPU Configuration ****
option.use_cpu()
option.use_ort_backend()
option.set_cpu_thread_num(12)

# Initialise runtime
runtime = fd.Runtime(option)

# Get model input name
input_name = runtime.get_input_info(0).name

# Constructing random data for inference
results = runtime.infer({
    input_name: np.random.rand(1, 3, 224, 224).astype("float32")
})

print(results[0].shape)

When loading is complete, you will get the following output information indicating the initialized backend and the hardware devices.

[INFO] fastdeploy/fastdeploy_runtime.cc(283)::Init	Runtime initialized with Backend::OrtBackend in device Device::CPU.

Other Documents