Skip to content

Commit

Permalink
lbfgs
Browse files Browse the repository at this point in the history
  • Loading branch information
endymecy committed Jan 24, 2017
1 parent 40b973a commit 923e149
Show file tree
Hide file tree
Showing 4 changed files with 16 additions and 1 deletion.
Binary file added 最优化算法/L-BFGS/imgs/2.28.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added 最优化算法/L-BFGS/imgs/2.29.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added 最优化算法/L-BFGS/imgs/2.30.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
17 changes: 16 additions & 1 deletion 最优化算法/L-BFGS/lbfgs.md
Original file line number Diff line number Diff line change
Expand Up @@ -176,7 +176,7 @@ $$J(x) = l(x) + C ||x||_{2}$$
- <b>1 次微分</b>

&emsp;&emsp;设$f:I\rightarrow R$是一个实变量凸函数,定义在实数轴上的开区间内。这种函数不一定是处处可导的,例如绝对值函数$f(x)=|x|$。但是,从下面的图中可以看出(也可以严格地证明),对于定义域中的任何$x_0$,我们总可以作出一条直线,它通过点($x_0$, $f(x_0)$),并且要么接触f的图像,要么在它的下方。
这条直线的斜率称为函数的次导数。
这条直线的斜率称为函数的次导数。推广到多元函数就叫做次梯度。

<div align="center"><img src="imgs/2.24.png" width = "500" height = "400" alt="2.24" align="center" /></div><br>

Expand All @@ -190,6 +190,21 @@ $$J(x) = l(x) + C ||x||_{2}$$

<div align="center"><img src="imgs/2.27.png" width = "200" height = "50" alt="2.27" align="center" /></div><br>

&emsp;&emsp;它们一定存在,且满足$a \leqslant b$。所有次导数的集合$[a, b]$称为函数`f`在$x_0$的次微分。

- <b>2 伪梯度</b>

&emsp;&emsp;利用次梯度的概念推广了梯度,定义了一个符合上述原则的伪梯度,求一维搜索的可行方向时用伪梯度来代替`L-BFGS`中的梯度。

<div align="center"><img src="imgs/2.28.png" width = "320" height = "80" alt="2.28" align="center" /></div><br>

&emsp;&emsp;其中

<div align="center"><img src="imgs/2.29.png" width = "350" height = "50" alt="2.29" align="center" /></div><br>

<div align="center"><img src="imgs/2.30.png" width = "180" height = "34" alt="2.30" align="center" /></div><br>


# 3 源码解析

## 3.1 BreezeLBFGS
Expand Down

0 comments on commit 923e149

Please sign in to comment.