-
Notifications
You must be signed in to change notification settings - Fork 444
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Co-authored-by: qinxuye <[email protected]>
- Loading branch information
1 parent
7a0bb60
commit 4c96475
Showing
40 changed files
with
2,505 additions
and
275 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
Empty file.
254 changes: 254 additions & 0 deletions
254
xinference/thirdparty/fish_speech/fish_speech/conversation.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,256 @@ | ||
from dataclasses import dataclass, field | ||
from typing import Literal | ||
|
||
import torch | ||
from transformers import AutoTokenizer, PretrainedConfig, PreTrainedTokenizerFast | ||
|
||
IM_START_TOKEN = "<|im_start|>" | ||
IM_END_TOKEN = "<|im_end|>" | ||
SEMANTIC_TOKEN = "<|semantic|>" | ||
MEL_TOKEN = "<|mel|>" | ||
PHONEME_START_TOKEN = "<|phoneme_start|>" | ||
PHONEME_END_TOKEN = "<|phoneme_end|>" | ||
ALL_SPECIAL_TOKENS = [ | ||
IM_START_TOKEN, | ||
IM_END_TOKEN, | ||
SEMANTIC_TOKEN, | ||
MEL_TOKEN, | ||
PHONEME_START_TOKEN, | ||
PHONEME_END_TOKEN, | ||
] | ||
|
||
CODEBOOK_PAD_TOKEN_ID = 0 | ||
|
||
|
||
class FishTokenizerConfig(PretrainedConfig): | ||
share_codebook_embeddings: bool = True | ||
codebook_size: int = 1024 | ||
num_codebooks: int = 8 | ||
|
||
|
||
class FishTokenizerFast(PreTrainedTokenizerFast): | ||
def __init__(self, *args, **kwargs): | ||
super().__init__(*args, **kwargs) | ||
self.share_codebook_embeddings = kwargs.pop("share_codebook_embeddings", True) | ||
self.codebook_size = kwargs.pop("codebook_size", 1024) | ||
self.num_codebooks = kwargs.pop("num_codebooks", 8) | ||
|
||
|
||
AutoTokenizer.register(FishTokenizerConfig, fast_tokenizer_class=FishTokenizerFast) | ||
|
||
|
||
@dataclass(kw_only=True) | ||
class BasePart: | ||
pass | ||
|
||
|
||
@dataclass(kw_only=True) | ||
class VQPart(BasePart): | ||
codes: torch.Tensor | ||
|
||
|
||
@dataclass(kw_only=True) | ||
class TextPart(BasePart): | ||
text: str | ||
|
||
|
||
@dataclass(kw_only=True) | ||
class MelPart(BasePart): | ||
mels: torch.Tensor | ||
|
||
|
||
@dataclass(kw_only=True) | ||
class EncodedMessage: | ||
tokens: torch.Tensor | ||
labels: torch.Tensor | ||
vq_parts: list[torch.Tensor] | ||
mel_parts: list[torch.Tensor] | ||
vq_require_losses: torch.Tensor | None = None | ||
|
||
|
||
@dataclass(kw_only=True) | ||
class Message: | ||
role: Literal["system", "user", "assistant"] | ||
parts: list[VQPart | TextPart | MelPart] = field(default_factory=list) | ||
add_im_start: bool = True | ||
add_im_end: bool = True | ||
cal_loss: bool = False | ||
|
||
# By default, ignore the loss of the auto-generated im_start token | ||
ignore_im_start_loss: bool = True | ||
|
||
def encode( | ||
self: "Message", | ||
tokenizer: AutoTokenizer, | ||
) -> EncodedMessage: | ||
all_tokens = [] | ||
all_labels = [] | ||
|
||
# Multi-modal tokens | ||
vq_parts = [] | ||
mel_parts = [] | ||
|
||
semantic_id, mel_id = tokenizer.convert_tokens_to_ids( | ||
[SEMANTIC_TOKEN, MEL_TOKEN] | ||
) | ||
|
||
parts = self.parts.copy() | ||
if self.add_im_start: | ||
parts.insert(0, TextPart(text=f"<|im_start|>{self.role}\n")) | ||
|
||
if self.add_im_end: | ||
parts.append(TextPart(text="<|im_end|>")) | ||
|
||
for part in parts: | ||
if isinstance(part, TextPart): | ||
tokens = tokenizer.encode( | ||
part.text, | ||
add_special_tokens=False, | ||
truncation=False, | ||
return_tensors="pt", | ||
).int()[0] | ||
elif isinstance(part, VQPart): | ||
tokens = torch.zeros(part.codes.shape[1], dtype=torch.int) + semantic_id | ||
codes = part.codes.clone() + 1 | ||
|
||
if getattr(tokenizer, "share_codebook_embeddings", True) is False: | ||
for i in range(len(codes)): | ||
codes[i] += tokenizer.codebook_size * i | ||
|
||
vq_parts.append(codes) | ||
elif isinstance(part, MelPart): | ||
tokens = torch.zeros(part.mels.shape[1], dtype=torch.int) + mel_id | ||
mel_parts.append(part.mels) | ||
else: | ||
raise ValueError(f"Unsupported part type: {type(part)}") | ||
|
||
all_tokens.append(tokens) | ||
if self.cal_loss: | ||
all_labels.append(tokens.clone()) | ||
else: | ||
all_labels.append(torch.full_like(tokens, -100)) | ||
|
||
tokens = torch.cat(all_tokens, dim=0) | ||
labels = torch.cat(all_labels, dim=0) | ||
assert tokens.shape == labels.shape | ||
|
||
if self.ignore_im_start_loss and self.add_im_start: | ||
labels[: len(all_tokens[0])] = -100 | ||
|
||
return EncodedMessage( | ||
tokens=tokens, | ||
labels=labels, | ||
vq_parts=vq_parts, | ||
mel_parts=mel_parts, | ||
) | ||
|
||
|
||
@dataclass | ||
class Conversation: | ||
messages: list[Message] | ||
|
||
def encode( | ||
self: "Conversation", | ||
tokenizer: AutoTokenizer, | ||
add_shift: bool = True, | ||
) -> EncodedMessage: | ||
# Build the input_ids and labels | ||
tokens = [] | ||
labels = [] | ||
vq_parts = [] | ||
mel_parts = [] | ||
vq_require_losses = [] | ||
|
||
for message in self.messages: | ||
encoded = message.encode( | ||
tokenizer, | ||
) | ||
tokens.append(encoded.tokens) | ||
labels.append(encoded.labels) | ||
vq_parts.extend(encoded.vq_parts) | ||
mel_parts.extend(encoded.mel_parts) | ||
vq_require_losses.extend([message.cal_loss] * len(encoded.vq_parts)) | ||
|
||
tokens = torch.cat(tokens, dim=0) | ||
labels = torch.cat(labels, dim=0) | ||
vq_require_losses = torch.tensor(vq_require_losses, dtype=torch.bool) | ||
|
||
if add_shift: | ||
tokens = tokens[:-1] | ||
labels = labels[1:] | ||
|
||
assert tokens.dtype in [ | ||
torch.int, | ||
torch.long, | ||
], f"Invalid dtype: {tokens.dtype}, conv: {conversation}" | ||
|
||
return EncodedMessage( | ||
tokens=tokens, | ||
labels=labels, | ||
vq_parts=vq_parts, | ||
mel_parts=mel_parts, | ||
vq_require_losses=vq_require_losses, | ||
) | ||
|
||
def encode_for_inference( | ||
self: "Conversation", | ||
tokenizer: AutoTokenizer, | ||
num_codebooks: int, | ||
) -> EncodedMessage: | ||
encoded = self.encode(tokenizer, add_shift=False) | ||
tokens = encoded.tokens | ||
values = torch.zeros((num_codebooks + 1, len(tokens)), dtype=torch.int) | ||
values[0] = tokens | ||
|
||
if encoded.vq_parts is None or len(encoded.vq_parts) == 0: | ||
return values | ||
|
||
semantic_id, mel_id = tokenizer.convert_tokens_to_ids( | ||
[SEMANTIC_TOKEN, MEL_TOKEN] | ||
) | ||
vq_parts = encoded.vq_parts | ||
vq_parts = torch.cat(vq_parts, dim=1) | ||
values[1:, tokens == semantic_id] = vq_parts | ||
return values | ||
|
||
def visualize(self: "Conversation", tokenizer: AutoTokenizer): | ||
encoded = self.encode(tokenizer, add_shift=False) | ||
|
||
print_in_blue = lambda x: print("\033[94m" + x + "\033[0m", end="") | ||
print_in_green = lambda x: print("\033[92m" + x + "\033[0m", end="") | ||
|
||
for tok, lab in zip(encoded.tokens, encoded.labels): | ||
val = tokenizer.decode(tok, skip_special_tokens=False) | ||
if val == "\n": | ||
val = "\\n\n" | ||
|
||
if lab == -100: | ||
print_in_green(val) | ||
else: | ||
print_in_blue(val) | ||
|
||
print() | ||
|
||
|
||
if __name__ == "__main__": | ||
message0 = Message( | ||
role="user", | ||
parts=[ | ||
TextPart(text="Hello, how are you?"), | ||
VQPart(codes=torch.zeros((4, 10))), | ||
], | ||
cal_loss=False, | ||
) | ||
|
||
message1 = Message( | ||
role="assistant", | ||
parts=[TextPart(text="I'm fine, thank you.")], | ||
cal_loss=True, | ||
) | ||
conversation = Conversation([message0, message1]) | ||
tokenizer = AutoTokenizer.from_pretrained("checkpoints/Qwen2-1.5B-Instruct") | ||
conversation.visualize(tokenizer) | ||
|
||
encoded = conversation.encode(tokenizer) | ||
print(encoded) | ||
print(tokenizer.batch_decode(encoded.tokens)) |
Empty file.
Empty file.
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.