Skip to content

Commit

Permalink
Merge pull request #64 from yaricom/fast-network-solver-serialization
Browse files Browse the repository at this point in the history
Implementing serialization/deserialization of the model for `FastModularNetworkSolver`
  • Loading branch information
yaricom authored May 14, 2024
2 parents 61473e5 + 692fab4 commit e79a27c
Show file tree
Hide file tree
Showing 6 changed files with 308 additions and 32 deletions.
9 changes: 7 additions & 2 deletions .github/workflows/ci.yml
Original file line number Diff line number Diff line change
Expand Up @@ -23,10 +23,15 @@ jobs:
env:
GO111MODULE: on

- name: Run coverage
- name: Run Tests
run: go test -coverprofile=coverage.txt -covermode=atomic -timeout 40m -v ./...
env:
GO111MODULE: on

- name: Upload coverage to Codecov
run: bash <(curl -s https://codecov.io/bash)
uses: codecov/codecov-action@v4
with:
files: ./coverage.txt
flags: unittests
token: ${{ secrets.CODECOV_TOKEN }}
verbose: true
23 changes: 5 additions & 18 deletions neat/network/fast_network.go
Original file line number Diff line number Diff line change
Expand Up @@ -10,13 +10,13 @@ import (
// FastNetworkLink The connection descriptor for fast network
type FastNetworkLink struct {
// The index of source neuron
SourceIndex int
SourceIndex int `json:"source_index"`
// The index of target neuron
TargetIndex int
TargetIndex int `json:"target_index"`
// The weight of this link
Weight float64
Weight float64 `json:"weight"`
// The signal relayed by this link
Signal float64
Signal float64 `json:"signal"`
}

// FastControlNode The module relay (control node) descriptor for fast network
Expand Down Expand Up @@ -132,8 +132,6 @@ func NewFastModularNetworkSolver(biasNeuronCount, inputNeuronCount, outputNeuron
return &fmm
}

// ForwardSteps Propagates activation wave through all network nodes provided number of steps in forward direction.
// Returns true if activation wave passed from all inputs to the outputs.
func (s *FastModularNetworkSolver) ForwardSteps(steps int) (res bool, err error) {
for i := 0; i < steps; i++ {
if res, err = s.forwardStep(0); err != nil {
Expand All @@ -143,9 +141,6 @@ func (s *FastModularNetworkSolver) ForwardSteps(steps int) (res bool, err error)
return res, nil
}

// RecursiveSteps Propagates activation wave through all network nodes provided number of steps by recursion from output nodes
// Returns true if activation wave passed from all inputs to the outputs. This method is preferred method
// of network activation when number of forward steps can not be easy calculated and no network modules are set.
func (s *FastModularNetworkSolver) RecursiveSteps() (res bool, err error) {
if len(s.modules) > 0 {
return false, errors.New("recursive activation can not be used for network with defined modules")
Expand Down Expand Up @@ -233,9 +228,6 @@ func (s *FastModularNetworkSolver) recursiveActivateNode(currentNode int) (res b
return res, err
}

// Relax Attempts to relax network given amount of steps until giving up. The network considered relaxed when absolute
// value of the change at any given point is less than maxAllowedSignalDelta during activation waves propagation.
// If maxAllowedSignalDelta value is less than or equal to 0, the method will return true without checking for relaxation.
func (s *FastModularNetworkSolver) Relax(maxSteps int, maxAllowedSignalDelta float64) (relaxed bool, err error) {
for i := 0; i < maxSteps; i++ {
if relaxed, err = s.forwardStep(maxAllowedSignalDelta); err != nil {
Expand Down Expand Up @@ -307,16 +299,14 @@ func (s *FastModularNetworkSolver) forwardStep(maxAllowedSignalDelta float64) (i
return isRelaxed, err
}

// Flush Flushes network state by removing all current activations. Returns true if network flushed successfully or
// false in case of error.
func (s *FastModularNetworkSolver) Flush() (bool, error) {
for i := s.biasNeuronCount; i < s.totalNeuronCount; i++ {
s.neuronSignals[i] = 0.0
s.neuronSignalsBeingProcessed[i] = 0.0
}
return true, nil
}

// LoadSensors Set sensors values to the input nodes of the network
func (s *FastModularNetworkSolver) LoadSensors(inputs []float64) error {
if len(inputs) == s.inputNeuronCount {
// only inputs should be provided
Expand All @@ -329,20 +319,17 @@ func (s *FastModularNetworkSolver) LoadSensors(inputs []float64) error {
return nil
}

// ReadOutputs Read output values from the output nodes of the network
func (s *FastModularNetworkSolver) ReadOutputs() []float64 {
// decouple and return
outs := make([]float64, s.outputNeuronCount)
copy(outs, s.neuronSignals[s.sensorNeuronCount:s.sensorNeuronCount+s.outputNeuronCount])
return outs
}

// NodeCount Returns the total number of neural units in the network
func (s *FastModularNetworkSolver) NodeCount() int {
return s.totalNeuronCount + len(s.modules)
}

// LinkCount Returns the total number of links between nodes in the network
func (s *FastModularNetworkSolver) LinkCount() int {
// count all connections
numLinks := len(s.connections)
Expand Down
114 changes: 114 additions & 0 deletions neat/network/fast_network_model_io.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
package network

import (
"encoding/json"
"github.com/yaricom/goNEAT/v4/neat/math"
"io"
)

// WriteModel is to write this FastModularNetworkSolver as a model to be used later.
func (s *FastModularNetworkSolver) WriteModel(w io.Writer) error {
dataHolder := newFastModularNetworkSolverData(s)
enc := json.NewEncoder(w)
return enc.Encode(dataHolder)
}

// ReadFMNSModel allows loading model encoding FastModularNetworkSolver.
func ReadFMNSModel(reader io.Reader) (*FastModularNetworkSolver, error) {
var data fastModularNetworkSolverData
dec := json.NewDecoder(reader)
if err := dec.Decode(&data); err != nil {
return nil, err
}
activationFunctions := make([]math.NodeActivationType, len(data.ActivationFunctions))
for i, f := range data.ActivationFunctions {
activationFunctions[i] = f.NodeActivation
}
var modules []*FastControlNode
if len(data.Modules) > 0 {
modules = make([]*FastControlNode, len(data.Modules))
for i, m := range data.Modules {
modules[i] = &FastControlNode{
ActivationType: m.ActivationType.NodeActivation,
InputIndexes: m.InputIndexes,
OutputIndexes: m.OutputIndexes,
}
}
}
fmns := NewFastModularNetworkSolver(
data.BiasNeuronCount, data.InputNeuronCount, data.OutputNeuronCount,
data.TotalNeuronCount, activationFunctions,
data.Connections, data.BiasList, modules,
)
fmns.Name = data.Name
fmns.Id = data.Id
return fmns, nil
}

type NodeActivator struct {
NodeActivation math.NodeActivationType
}

type fastControlNodeData struct {
ActivationType NodeActivator `json:"activation_type"`
InputIndexes []int `json:"input_indexes"`
OutputIndexes []int `json:"output_indexes"`
}

type fastModularNetworkSolverData struct {
Id int `json:"id"`
Name string `json:"name"`
InputNeuronCount int `json:"input_neuron_count"`
SensorNeuronCount int `json:"sensor_neuron_count"`
OutputNeuronCount int `json:"output_neuron_count"`
BiasNeuronCount int `json:"bias_neuron_count"`
TotalNeuronCount int `json:"total_neuron_count"`
ActivationFunctions []NodeActivator `json:"activation_functions"`
BiasList []float64 `json:"bias_list"`
Connections []*FastNetworkLink `json:"connections"`
Modules []fastControlNodeData `json:"modules,omitempty"`
}

func newFastModularNetworkSolverData(n *FastModularNetworkSolver) *fastModularNetworkSolverData {
data := &fastModularNetworkSolverData{
Id: n.Id,
Name: n.Name,
InputNeuronCount: n.inputNeuronCount,
SensorNeuronCount: n.sensorNeuronCount,
OutputNeuronCount: n.outputNeuronCount,
BiasNeuronCount: n.biasNeuronCount,
TotalNeuronCount: n.totalNeuronCount,
ActivationFunctions: make([]NodeActivator, len(n.activationFunctions)),
BiasList: n.biasList,
Connections: n.connections,
Modules: make([]fastControlNodeData, 0),
}
for i, v := range n.activationFunctions {
data.ActivationFunctions[i] = NodeActivator{
NodeActivation: v,
}
}
if n.modules != nil {
for _, v := range n.modules {
data.Modules = append(data.Modules, fastControlNodeData{
ActivationType: NodeActivator{NodeActivation: v.ActivationType},
InputIndexes: v.InputIndexes,
OutputIndexes: v.OutputIndexes,
})
}
}
return data
}

func (n *NodeActivator) MarshalText() ([]byte, error) {
if activationName, err := math.NodeActivators.ActivationNameFromType(n.NodeActivation); err != nil {
return nil, err
} else {
return []byte(activationName), nil
}
}

func (n *NodeActivator) UnmarshalText(text []byte) (err error) {
n.NodeActivation, err = math.NodeActivators.ActivationTypeFromName(string(text))
return err
}
163 changes: 163 additions & 0 deletions neat/network/fast_network_model_io_test.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,163 @@
package network

import (
"bytes"
"encoding/json"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
"testing"
)

const jsonFMNStr = `{"id":123456,"name":"test network","input_neuron_count":2,"sensor_neuron_count":3,"output_neuron_count":2,"bias_neuron_count":1,"total_neuron_count":8,"activation_functions":["SigmoidSteepenedActivation","SigmoidSteepenedActivation","SigmoidSteepenedActivation","SigmoidSteepenedActivation","SigmoidSteepenedActivation","SigmoidSteepenedActivation","SigmoidSteepenedActivation","SigmoidSteepenedActivation"],"bias_list":[0,0,0,0,0,0,1,0],"connections":[{"source_index":1,"target_index":5,"weight":15,"signal":0},{"source_index":2,"target_index":5,"weight":10,"signal":0},{"source_index":2,"target_index":6,"weight":5,"signal":0},{"source_index":6,"target_index":7,"weight":17,"signal":0},{"source_index":5,"target_index":3,"weight":7,"signal":0},{"source_index":7,"target_index":3,"weight":4.5,"signal":0},{"source_index":7,"target_index":4,"weight":13,"signal":0}]}`
const jsonFNMStrModule = `{"id":123456,"name":"test network","input_neuron_count":2,"sensor_neuron_count":3,"output_neuron_count":2,"bias_neuron_count":1,"total_neuron_count":8,"activation_functions":["SigmoidSteepenedActivation","SigmoidSteepenedActivation","SigmoidSteepenedActivation","LinearActivation","LinearActivation","LinearActivation","LinearActivation","NullActivation"],"bias_list":[0,0,0,0,0,10,1,0],"connections":[{"source_index":1,"target_index":5,"weight":15,"signal":0},{"source_index":2,"target_index":6,"weight":5,"signal":0},{"source_index":7,"target_index":3,"weight":4.5,"signal":0},{"source_index":7,"target_index":4,"weight":13,"signal":0}],"modules":[{"activation_type":"MultiplyModuleActivation","input_indexes":[5,6],"output_indexes":[7]}]}`

const networkName = "test network"
const networkId = 123456

func TestFastModularNetworkSolver_WriteModel_NoModule(t *testing.T) {
net := buildNamedNetwork(networkName, networkId)

fmm, err := net.FastNetworkSolver()
require.NoError(t, err, "failed to create fast network solver")

outBuf := bytes.NewBufferString("")
err = fmm.(*FastModularNetworkSolver).WriteModel(outBuf)
require.NoError(t, err, "failed to write model")

println(outBuf.String())

var expected interface{}
err = json.Unmarshal([]byte(jsonFMNStr), &expected)
require.NoError(t, err, "failed to unmarshal expected json")
var actual interface{}
err = json.Unmarshal(outBuf.Bytes(), &actual)
require.NoError(t, err, "failed to unmarshal actual json")

assert.EqualValues(t, expected, actual, "model JSON does not match expected JSON")
}

func TestFastModularNetworkSolver_WriteModel_WithModule(t *testing.T) {
net := buildNamedModularNetwork(networkName, networkId)

fmm, err := net.FastNetworkSolver()
require.NoError(t, err, "failed to create fast network solver")

outBuf := bytes.NewBufferString("")
err = fmm.(*FastModularNetworkSolver).WriteModel(outBuf)
require.NoError(t, err, "failed to write model")

println(outBuf.String())

var expected interface{}
err = json.Unmarshal([]byte(jsonFNMStrModule), &expected)
require.NoError(t, err, "failed to unmarshal expected json")
var actual interface{}
err = json.Unmarshal(outBuf.Bytes(), &actual)
require.NoError(t, err, "failed to unmarshal actual json")

assert.EqualValues(t, expected, actual, "model JSON does not match expected JSON")
}

func TestReadFMNSModel_NoModule(t *testing.T) {
buf := bytes.NewBufferString(jsonFMNStr)

fmm, err := ReadFMNSModel(buf)
assert.NoError(t, err, "failed to read model")
assert.NotNil(t, fmm, "failed to deserialize model")

assert.Equal(t, fmm.Name, networkName, "wrong network name")
assert.Equal(t, fmm.Id, networkId, "wrong network id")

data := []float64{1.5, 2.0} // bias inherent
err = fmm.LoadSensors(data)
require.NoError(t, err, "failed to load sensors")

// test that it operates as expected
//
net := buildNetwork()
depth, err := net.MaxActivationDepth()
require.NoError(t, err, "failed to calculate max depth")

t.Logf("depth: %d\n", depth)
logNetworkActivationPath(net, t)

data = append(data, 1.0) // BIAS is third object
err = net.LoadSensors(data)
require.NoError(t, err, "failed to load sensors")
res, err := net.ForwardSteps(depth)
require.NoError(t, err, "error when trying to activate objective network")
require.True(t, res, "failed to activate objective network")

// do forward steps through the solver and test results
//
res, err = fmm.Relax(depth, .1)
require.NoError(t, err, "error while do forward steps")
require.True(t, res, "forward steps returned false")

// check results by comparing activations of objective network and fast network solver
//
outputs := fmm.ReadOutputs()
for i, out := range outputs {
assert.Equal(t, net.Outputs[i].Activation, out, "wrong activation at: %d", i)
}
}

func TestReadFMNSModel_ModularNetwork(t *testing.T) {
buf := bytes.NewBufferString(jsonFNMStrModule)

fmm, err := ReadFMNSModel(buf)
assert.NoError(t, err, "failed to read model")
assert.NotNil(t, fmm, "failed to deserialize model")

assert.Equal(t, fmm.Name, networkName, "wrong network name")
assert.Equal(t, fmm.Id, networkId, "wrong network id")

data := []float64{1.0, 2.0} // bias inherent
err = fmm.LoadSensors(data)
require.NoError(t, err, "failed to load sensors")

// test that it operates as expected
//
net := buildModularNetwork()
depth, err := net.MaxActivationDepth()
require.NoError(t, err, "failed to calculate max depth")

t.Logf("depth: %d\n", depth)
logNetworkActivationPath(net, t)

// activate objective network
//
data = append(data, 1.0) // BIAS is third object
err = net.LoadSensors(data)
require.NoError(t, err, "failed to load sensors")
res, err := net.ForwardSteps(depth)
require.NoError(t, err, "error when trying to activate objective network")
require.True(t, res, "failed to activate objective network")

// do forward steps through the solver and test results
//
res, err = fmm.Relax(depth, 1)
require.NoError(t, err, "error while do forward steps")
require.True(t, res, "forward steps returned false")

// check results by comparing activations of objective network and fast network solver
//
outputs := fmm.ReadOutputs()
for i, out := range outputs {
assert.Equal(t, net.Outputs[i].Activation, out, "wrong activation at: %d", i)
}

}
func buildNamedNetwork(name string, id int) *Network {
net := buildNetwork()
net.Name = name
net.Id = id
return net
}

func buildNamedModularNetwork(name string, id int) *Network {
net := buildModularNetwork()
net.Name = name
net.Id = id
return net
}
Loading

0 comments on commit e79a27c

Please sign in to comment.