-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
1 changed file
with
127 additions
and
0 deletions.
There are no files selected for viewing
127 changes: 127 additions & 0 deletions
127
Venus_all_band donwnload data.from Google Earth Engine.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
#!/usr/bin/env python3 | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Tue Oct 1 15:16:23 2019 | ||
@author: yaron | ||
""" | ||
|
||
import ee | ||
import os | ||
from ipygee import * | ||
|
||
import pandas as pd | ||
from openpyxl import load_workbook | ||
from datetime import datetime | ||
ee.Initialize() | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
feature_to_use ='users/yaron1205/Mizam_Israeli_Wheat_Adaptation_to_Climate_Change/LR2019_GEE' | ||
#feature_to_use ='users/yaron1205/Mizam_Israeli_Wheat_Adaptation_to_Climate_Change/PW2019_genus' | ||
|
||
#fid_st of | ||
id_colum_to_use = 'st_fid' | ||
#id_colum_to_use = 'cv' | ||
path_to_xls = 'D:/F.xlsx' | ||
Scale = 0.001 | ||
|
||
|
||
name_of_columns = { | ||
'b1': 'VE1', | ||
'b2': 'VE2', | ||
'b3': 'VE3', | ||
'b4': 'VE4', | ||
'b5': 'VE5', | ||
'b6': 'VE6', | ||
'b7': 'VE7', | ||
'b8': 'VE8', | ||
'b9': 'VE9', | ||
'b10': 'VE10', | ||
'b11': 'VE11', | ||
'b12': 'VE12', | ||
'b15': 'CloudMask', | ||
} | ||
|
||
|
||
|
||
|
||
|
||
def Scale_function(x): | ||
x= x*Scale | ||
return x | ||
|
||
|
||
feature = ee.FeatureCollection(feature_to_use) | ||
fc_temp = feature.getInfo() | ||
fc_info =fc_temp['features'] | ||
|
||
|
||
|
||
list_of_vale_to_loop =[] | ||
# Using for loop | ||
|
||
for i in fc_info: | ||
|
||
print(i['properties'][id_colum_to_use]) | ||
|
||
list_of_vale_to_loop.append(i['properties'][id_colum_to_use]) | ||
|
||
|
||
# start the work | ||
list_of_sheet =[] | ||
list_of_sheet_name =[] | ||
for vale in list_of_vale_to_loop: | ||
print (vale) | ||
FC = (ee.FeatureCollection(feature_to_use).filter(ee.Filter().eq(id_colum_to_use, vale))) | ||
print(FC) | ||
col = ee.ImageCollection('users/venusdataw10/VEw10').filterBounds(feature) | ||
time_series = col.filterDate('2018-07-11', '2019-05-31') | ||
bands = ['b1', 'b2', 'b3','b4', 'b5', 'b6','b7', 'b8', 'b9','b10', 'b11', 'b12','b15'] | ||
chart_ts = chart.Image.series(**{ | ||
'imageCollection': time_series, | ||
'region': FC, | ||
'scale': 5, | ||
'bands': bands, | ||
'reducer': ee.Reducer.mean()}) | ||
print(chart_ts.dataframe) | ||
|
||
dataframe = chart_ts.dataframe.apply(Scale_function, axis=1) | ||
|
||
|
||
|
||
|
||
#chart_ts.dataframe['DATE'] = chart_ts.dataframe.index | ||
#chart_ts.dataframe = chart_ts.dataframe.reindex(columns=['DATE','B1', 'B2', 'B3','B4', 'B5', 'B6','B7', 'B8', 'B8A','B9', 'B10', 'B11','B12']) | ||
list_of_sheet.append(dataframe) | ||
list_of_sheet_name.append(vale) | ||
|
||
|
||
# save the data | ||
for sheet_data, sheet in zip(list_of_sheet, list_of_sheet_name): | ||
print(sheet_data, sheet) | ||
|
||
sheet_data['DATE'] = sheet_data.index | ||
sheet_data = sheet_data.reindex(columns=['DATE','b1', 'b2', 'b3','b4', 'b5', 'b6','b7', 'b8', 'b9','b10', 'b11', 'b12','b15']) | ||
sheet_data['b15'] = sheet_data['b15'].apply(lambda x: x* 1000) #cloud mask info | ||
sheet_data = sheet_data.rename(name_of_columns, axis='columns') | ||
sheet_data['DATE'] = sheet_data['DATE'].apply(lambda x: x.strftime("%d/%m/%Y")) | ||
writer = pd.ExcelWriter(path_to_xls, engine='openpyxl') | ||
book = load_workbook(path_to_xls) | ||
writer.book = book | ||
writer.sheets = dict((ws.title, ws) for ws in book.worksheets) | ||
|
||
sheet_data.to_excel(writer, sheet_name=sheet, index=False ) | ||
writer.save() | ||
|
||
|
||
#columnsTitles = ['ID','Vb1', 'Vb2', 'Vb3','Vb4', 'Vb5', 'Vb6','Vb7', 'Vb8', 'Vb9','Vb10', 'Vb11', 'Vb12'] | ||
|
||
|
||
|
||
#df = df.reindex(columns=columnsTitles) | ||
|