Skip to content

ybdesire/machinelearning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Machine Learning

My machine learning code written by Python.

1. Environment Setup

  • (1) Install Python 3.5 at Windows10.
  • (2) Install IPython 4.0.3.
  • (3) Install machine learning packages installer Anaconda.
  • (4) Run IPython and access "http://127.0.0.1:8888" at browser.
> ipython notebook

2. ML libs/packages

2.1 numpy

2.2 matplotlib

2.3 scipy

2.4 pandas

2.5 seaborn

3. ML algorithms

Samples should be opened by ipython.

3.1 Supervised Learning

3.1.1 Classification

Linear Model

Decision Tree

Random Forest

SVM

Neural Network

Gradient Boosting for classification

CNN (Deep Learning)

XGBoost

DBN

RNN

DCNN

3.1.2 Regression

Linear Regression

3.2 Un-Supervised Learning

3.2.1 HMM

3.2.1 Cluster

k-Nearest Neighbor

DBSCAN

3.2.2 PCA

3.3 Model evaluation

3.4 Model selection

3.5 Tensorflow

3.5.1 TF Basic

3.5.2 tf.estimator

DNNClassifier set batchsize and epoch

3.5.3 TF models

3.6 Tensorboard

3.6.1 Tensorboard by Tensorflow

3.6.2 Tensorboard by Keras

3.7 keras

3.7.1 basic

3.7.2 models

3.7.3 complex

3.8 theano

3.9 Incremental learning

3.10 outlier detection

3.11 sklearn

3.12 jupyter

3.13 mxnet

3.13.1 NDArray

3.13.2 Basic

4. Feature Engineering

4.1 Working With Text Data

4.2 String Hash

4.3 Normalization

4.4 Feature selection

4.5 imbalance data process

4.6 missing values

5. Image process

5.1 OpenCV

5.1.1 OpenCV Python

Installation

Basic

Preprocess

Projects

5.1.2 OpenCV CPP

opencv 2.4.9 & windows-7

5.1.3 Features & Matcher

5.1.4 Geometric Transformations

5.2 Useful features

5.3 OCR

5.4 3D graph process

5.5 face_recognition

6. Distributed ML

6.1 Spark

6.1.1 Spark Cluster Deployment

6.1.2 Jupyter Integrate with Spark

6.1.3 Spark One Node

6.1.4 Spark Cluster

6.1.5 Mlib

6.1.6 spark at aws emr

6.2 Hadoop

6.2.1 Environment Setup

6.2.2 Run Hadoop self-example at Standalone mode

6.2.3 HDFS

6.2.4 mrjob

7. NLP

7.1 nltk

7.2 word2vec

7.3 Others

7.4 keyword & abstract extraction

7.5 gensim

7.6 AllenNLP

7.7 Spacy

7.8 gensim

7.9 keras-bert

7.10 wordcloud

7.11 wordnet

7.12 NER

7.13 LDA

8. Audio

8.1 pyAudioAnalysis

8.2 signal data augmentation

9. GPU

10. Video

11. recommandation system

11.1 surprise

12. other machine learning related algorithm

13. Small project/features

14. related tools

14.1 conda

15. front-end AI

15.1 JS access camera

15.2 face-api.js

16. D3.js

17. LOFO

18. vaderSentiment

19. offline deployment

  1. build sklearn model and py files to elf

20. keras-nlp

*keras-nlp dataset and classifier basic demo

About

My machine learning code written by python.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published