- all_test_methods.csv: all accessible test methods in the iPFlakies dataset
- selected_methods.csv: test methods of 10 selected projects in the iPFlakies dataset
- refined_selected_methods.csv: all the test methods in selected_methods.csv + augmented test methods of 10 selected projects not recorded in iPFlakies dataset (assumed as non-flaky tests)
- Row: corresponding row number in https://sites.google.com/view/ipflakies (1-index)
- -1: augmented when grabbing assumed non-flaky tests not recorded in the iPFlakies dataset
- Project_Name: name of the project with the test method
- URL: URL to the Python code file with the test method (usually copied from the iPFlakies dataset)
- New URL: URL to the raw Python code file with the exact test method (so we can directly extract the test code from this URL)
- Class: class of the test method (if applicable)
- Test: test method name
- Content: test method
- Detected: whether the test method is detected as flaky
- Row: corresponding row number in https://sites.google.com/view/ipflakies (1-index)
- data: data needed for testing 10 projects
- For each project p:
- test_set.jsonl: containing all the test methods of p
- training_set.jsonl: constructed from test methods in the other 9 projects (balanced after random oversampling)
- For each project p:
- Go_Through_IFixFlakies.ipynb: creating raw data files
- Naive_GPT_4o_mini.ipynb: predicting test methods in test_set.jsonl by naive GPT-4o mini
- Finetuned_GPT_4o_mini.ipynb: fine-tuning GPT-4o mini with training_set.jsonl & predicting test methods in test_set.jsonl by fine-tuned GPT-4o mini