Skip to content

Stand-alone version of the POS tagger of the stanza toolkit

License

Notifications You must be signed in to change notification settings

yvesscherrer/stanzatagger

Repository files navigation

stanzatagger

This is a stand-alone version of the POS-tagger of the stanza toolkit.

It is designed as a replacement of my earlier lstmtagger.

Differences compared to lstmtagger

  • Based on PyTorch, supports both CPU and GPU
  • Supports early stopping, and a wider range of optimizers (Adam as default)
  • Allows any combination of character-LSTM-based embeddings, trainable word embeddings and pretrained (frozen) word embeddings
  • Uses biaffine prediction layers
  • Avoids inconsistent predictions by feeding the predicted POS tag to the morphological feature predictions
  • Supports data augmentation with non-punctuation-ending sentences

Differences compared to stanza

  • Leaner codebase due to focus on POS-tagging
  • Does not rely on the folder hierarchies and naming conventions of Universal Dependencies
  • Does not support two levels of POS tags in the same model (i.e., either UPOS or XPOS, but not both)
  • Uses bidirectional character-LSTM by default
  • More data reading and writing options to support datasets that do not exactly conform to CoNLL-U
  • Command-line options compatible with lstmtagger
  • More fine-grained evaluation

Usage

The following command trains a model on the French Sequoia treebank:

python tagger.py \
        --training-data fr_sequoia-ud-train.conllu \
        --dev-data fr_sequoia-ud-dev.conllu \
        --dev-data-out exp_fr/dev_out.conllu \
        --scores-out exp_fr/scores.tsv \
        --model-save exp_fr/tagger.pt \
        --batch-size 500 \
        --max-steps 50000 \
        --augment-nopunct

The following command uses the trained model to annotate the test set:

python tagger.py \
        --model exp_fr/tagger.pt \
        --test-data fr_sequoia-ud-test.conllu \
        --test-data-out exp_fr/test_out.conllu \
        --batch-size 500

The two commands above can be combined in a single command to avoid reloading the model:

python tagger.py \
        --training-data fr_sequoia-ud-train.conllu \
        --dev-data fr_sequoia-ud-dev.conllu \
        --dev-data-out exp_fr/dev_out.conllu \
        --test-data fr_sequoia-ud-test.conllu \
        --test-data-out exp_fr/test_out.conllu \
        --scores-out exp_fr/scores.tsv \
        --model-save exp_fr/tagger.pt \
        --batch-size 500 \
        --max-steps 50000 \
        --augment-nopunct

Full list of parameters

General parameters:

  -h, --help            show this help message and exit
  --seed SEED           Set the random seed
  --cpu                 Force CPU even if GPU is available

File paths:

  --training-data TRAINING_DATA [TRAINING_DATA ...]
                        Input training data file(s), a space-separated list of
                        several file names can be given
  --emb-data EMB_DATA   File from which to read the pretrained embeddings
                        (supported file types: .txt, .vec, .xz, .gz)
  --emb-max-vocab EMB_MAX_VOCAB
                        Limit the pretrained embeddings to the first N entries
                        (default: 250000)
  --dev-data DEV_DATA   Input development/validation data file
  --dev-data-out DEV_DATA_OUT
                        Output file for annotated development/validation data
  --test-data TEST_DATA
                        Input test data file
  --test-data-out TEST_DATA_OUT
                        Output file for annotated test data
  --scores-out SCORES_OUT
                        TSV file in which training scores and statistics are
                        saved (default: None)
  --model MODEL         Binary file (.pt) containing the parameters of a trained
                        model
  --model-save MODEL_SAVE
                        Binary file (.pt) in which the parameters of a trained
                        model are saved
  --embeddings EMBEDDINGS
                        Binary file (.pt) containing the parameters of the
                        pretrained embeddings
  --embeddings-save EMBEDDINGS_SAVE
                        Binary file (.pt) in which the parameters of the
                        pretrained embeddings are saved

Data formatting and evaluation:

  --number-index NUMBER_INDEX
                        Field in which the word numbers are stored (default: 0)
  --number-index-out NUMBER_INDEX_OUT
                        Field in which the word numbers are saved in the output
                        file (default: 0). Use negative value to skip word
                        numbers.
  --c-token-index C_TOKEN_INDEX
                        Field in which the tokens used for the character
                        embeddings are stored (default: 1). Use negative value
                        if character embeddings should be disabled.
  --c-token-index-out C_TOKEN_INDEX_OUT
                        Field in which the character embedding tokens are saved
                        in the output file (default: 1). Use negative value to
                        skip tokens.
  --w-token-index W_TOKEN_INDEX
                        Field in which the tokens used for the word embeddings
                        are stored (default: 1). Use negative value if word
                        embeddings should be disabled.
  --w-token-index-out W_TOKEN_INDEX_OUT
                        Field in which the tokens used for the word embeddings
                        are saved in the output file (default: -1). Use negative
                        value to skip tokens.
  --w-token-min-freq W_TOKEN_MIN_FREQ
                        Minimum frequency starting from which word embeddings
                        will be considered (default: 7)
  --pos-index POS_INDEX
                        Field in which the main POS is stored (default [UPOS
                        tags]: 3)
  --pos-index-out POS_INDEX_OUT
                        Field in which the main POS is saved in the output file
                        (default: 3)
  --morph-index MORPH_INDEX
                        Field in which the morphology features are stored
                        (default: 5). Use negative value if morphology features
                        should not be considered
  --morph-index-out MORPH_INDEX_OUT
                        Field in which the morphology features are saved in the
                        output file (default: 5). Use negative value to skip
                        features.
  --oov-index-out OOV_INDEX_OUT
                        Field in which OOV information is saved in the output
                        file (default: not written)
  --no-eval-feats NO_EVAL_FEATS [NO_EVAL_FEATS ...]
                        Space-separated list of morphological features that
                        should be ignored during evaluation. Typically used for
                        additional tasks in multitask settings.
  --mask-other-fields   Replaces fields in input that are not used by the tagger
                        (e.g. lemmas, dependencies) with '_' instead of copying
                        them.
  --augment-nopunct [AUGMENT_NOPUNCT]
                        Augment the training data by copying some amount of
                        punct-ending sentences as non-punct (default: 0.1,
                        corresponding to 10%)
  --punct-tag PUNCT_TAG
                        POS tag of sentence-final punctuation used for
                        augmentation (default: PUNCT)
  --sample-train SAMPLE_TRAIN
                        Subsample training data to proportion of N (default:
                        1.0)
  --cut-dev CUT_DEV     Cut dev data to first N sentences (default: keep all)
  --debug               Debug mode. This is a shortcut for '--sample-train 0.05
                        --cut-dev 100 --batch-size -1'

Network architecture:

  --word-emb-dim WORD_EMB_DIM
                        Size of word embedding layer (default: 75). Use negative
                        value to turn off word embeddings
  --char-emb-dim CHAR_EMB_DIM
                        Size of character embedding layer (default: 100). Use
                        negative value to turn off character embeddings
  --transformed-emb-dim TRANSFORMED_DIM
                        Size of transformed output layer of character embeddings
                        and pretrained embeddings (default: 125)
  --pos-emb-dim POS_EMB_DIM
                        Size of POS embeddings that are fed to predict the
                        morphology features (default: 50). Use negative value to
                        use shared, i.e. non-hierarchical representations for
                        POS and morphology
  --char-hidden-dim CHAR_HIDDEN_DIM
                        Size of character LSTM hidden layers (default: 400)
  --char-num-layers CHAR_NUM_LAYERS
                        Number of character LSTM layers (default: 1). Use 0 to
                        disable character LSTM
  --char-unidir         Uses a unidirectional LSTM for the character embeddings
                        (default: bidirectional)
  --tag-hidden-dim TAG_HIDDEN_DIM
                        Size of tagger LSTM hidden layers (default: 200)
  --tag-num-layers TAG_NUM_LAYERS
                        Number of tagger LSTM layers (default: 2)
  --deep-biaff-hidden-dim DEEP_BIAFF_HIDDEN_DIM
                        Size of biaffine hidden layers (default: 400)
  --composite-deep-biaff-hidden-dim COMPOSITE_DEEP_BIAFF_HIDDEN_DIM
                        Size of composite biaffine hidden layers (default: 100)
  --dropout DROPOUT     Input dropout (default: 0.5)
  --char-rec-dropout CHAR_REC_DROPOUT
                        Recurrent dropout for character LSTM (default: 0).
                        Should only be used with more than one layer
  --tag-rec-dropout TAG_REC_DROPOUT
                        Recurrent dropout for the tagger LSTM (default: 0).
                        Should only be used with more than one layer
  --word-dropout WORD_DROPOUT
                        Word dropout (default: 0.33)

Training and optimization:

  --batch-size BATCH_SIZE
                        Batch size in tokens (default: 5000). Use negative value
                        to use single sentences
  --max-steps MAX_STEPS
                        Maximum training steps (default: 50000)
  --max-steps-before-stop MAX_STEPS_BEFORE_STOP
                        Changes learning method or early terminates after N
                        steps if the dev scores are not improving (default:
                        3000). Use negative value to disable early stopping
  --log-interval LOG_INTERVAL
                        Print log every N steps. The default value is determined
                        on the basis of batch size and CPU/GPU mode.
  --eval-interval EVAL_INTERVAL
                        Evaluate on dev set every N steps. The default value is
                        determined on the basis of the training and dev data
                        sizes.
  --learning-rate LR    Learning rate (default: 3e-3)
  --optimizer {sgd,adagrad,adam,adamax}
                        Optimization algorithm (default: adam)
  --beta2 BETA2         Beta2 value required for adam optimizer (default: 0.95)
  --max-grad-norm MAX_GRAD_NORM
                        Gradient clipping (default: 1.0)

References and licensing

The Stanza toolkit is described in the following paper:

Stanza: A Python Natural Language Processing Toolkit for Many Human Languages

More details about the POS-tagger architecture are given in the following paper:

Universal Dependency Parsing from Scratch

Like the Stanza toolkit on which it is based, stanzatagger is released under the Apache License, Version 2.0. See the LICENSE file for more details.

About

Stand-alone version of the POS tagger of the stanza toolkit

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages