Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: apply backend wrappers to camtools functions #67

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
130 changes: 88 additions & 42 deletions camtools/camera.py
Original file line number Diff line number Diff line change
@@ -1,30 +1,36 @@
import open3d as o3d
import numpy as np

from . import convert
from . import sanity
from . import solver

from .backend import Tensor, tensor_backend_numpy
from jaxtyping import Float
from typing import List, Tuple, Dict


@tensor_backend_numpy
def create_camera_frustums(
Ks,
Ts,
image_whs=None,
size=0.1,
color=(0, 0, 1),
highlight_color_map=None,
center_line=True,
center_line_color=(1, 0, 0),
up_triangle=True,
center_ray=False,
Ks: Float[Tensor, "n 3 3"],
Ts: Float[Tensor, "n 4 4"],
image_whs: List[Tuple[int, int]] = None,
size: float = 0.1,
color: Float[Tensor, "3"] = (0.0, 0.0, 1.0),
highlight_color_map: Dict[int, Float[Tensor, "3"]] = None,
center_line: bool = True,
center_line_color: Float[Tensor, "3"] = (1.0, 0.0, 0.0),
up_triangle: bool = True,
center_ray: bool = False,
):
"""
Create camera frustums in lineset.

Args:
Ks: List of 3x3 camera intrinsics matrices. You can set Ks to None if
the intrinsics are not available. In this case, a dummy intrinsics
Ks: List of 3x3 camera intrinsics. You can set Ks to None if the
intrinsics are not available. In this case, a dummy intrinsics
matrix will be used.
Ts: List of 4x4 camera extrinsics matrices.
Ts: List of 4x4 camera camera extrinsics.
image_whs: List of image width and height. If None, the image width and
height are determined from the camera intrinsics by assuming that
the camera offset is exactly at the center of the image.
Expand All @@ -33,8 +39,8 @@ def create_camera_frustums(
highlight_color_map: A map of camera_index to color, specifying the
colors of the highlighted cameras. Index wrapping is supported.
For example, to highlight the start and stop cameras, use:
highlight_color_map = {0: [0, 1, 0], -1: [1, 0, 0]}. If None, no
camera is highlighted.
highlight_color_map = {0: [0.0, 1.0, 0.0], -1: [1.0, 0.0, 0.0]}.
If None, no camera is highlighted.
center_line: If True, the camera center line will be drawn.
center_line_color: Color of the camera center line.
up_triangle: If True, the up triangle will be drawn.
Expand Down Expand Up @@ -116,18 +122,37 @@ def create_camera_frustums(


def create_camera_frustum_with_Ts(
Ts,
image_whs=None,
size=0.1,
color=(0, 0, 1),
highlight_color_map=None,
center_line=True,
center_line_color=(1, 0, 0),
up_triangle=True,
center_ray=False,
Ts: Float[Tensor, "n 4 4"],
image_whs: List[Tuple[int, int]] = None,
size: float = 0.1,
color: Float[Tensor, "3"] = (0.0, 0.0, 1.0),
highlight_color_map: Dict[int, Float[Tensor, "3"]] = None,
center_line: bool = True,
center_line_color: Float[Tensor, "3"] = (1.0, 0.0, 0.0),
up_triangle: bool = True,
center_ray: bool = False,
):
"""
Returns ct.camera.create_camera_frustums(Ks=None, Ts, ...).
Create camera frustums in lineset. Returns
ct.camera.create_camera_frustums(Ks=None, Ts, ...).

Args:
Ts: List of 4x4 camera camera extrinsics.
image_whs: List of image width and height. If None, the image width and
height are determined from the camera intrinsics by assuming that
the camera offset is exactly at the center of the image.
size: Distance from the camera center to image plane in world coordinates.
color: Color of the camera frustums.
highlight_color_map: A map of camera_index to color, specifying the
colors of the highlighted cameras. Index wrapping is supported.
For example, to highlight the start and stop cameras, use:
highlight_color_map = {0: [0.0, 1.0, 0.0], -1: [1.0, 0.0, 0.0]}.
If None, no camera is highlighted.
center_line: If True, the camera center line will be drawn.
center_line_color: Color of the camera center line.
up_triangle: If True, the up triangle will be drawn.
center_ray: If True, the ray from camera center to the center pixel in
the image plane will be drawn.
"""
return create_camera_frustums(
Ks=None,
Expand All @@ -143,7 +168,21 @@ def create_camera_frustum_with_Ts(
)


def create_camera_center_line(Ts, color=np.array([1, 0, 0])):
@tensor_backend_numpy
def create_camera_center_line(
Ts: Float[Tensor, "n 4 4"],
color: Float[Tensor, "3"] = (1.0, 0.0, 0.0),
):
"""
Create camera center lines in lineset.

Args:
Ts: List of 4x4 camera camera extrinsics.
color: Color of the camera center lines.

Return:
An Open3D lineset containing all the camera center lines.
"""
num_nodes = len(Ts)
camera_centers = [convert.T_to_C(T) for T in Ts]

Expand All @@ -158,22 +197,14 @@ def create_camera_center_line(Ts, color=np.array([1, 0, 0])):


def _create_camera_frustum(
K,
T,
image_wh,
size,
color,
up_triangle,
center_ray,
K: Float[Tensor, "3 3"],
T: Float[Tensor, "4 4"],
image_wh: Tuple[int, int],
size: float,
color: Float[Tensor, "3"],
up_triangle: bool,
center_ray: bool,
):
"""
K: (3, 3)
T: (4, 4)
image:_wh: (2,)
size: float
up_triangle: bool
center_ray: bool
"""
T, K, color = np.asarray(T), np.asarray(K), np.asarray(color)
sanity.assert_T(T)
sanity.assert_K(K)
Expand Down Expand Up @@ -280,7 +311,22 @@ def points_2d_to_3d_world(points_2d):
return ls


def _wrap_dim(dim: int, max_dim: int, inclusive: bool = False) -> int:
def _wrap_dim(
dim: int,
max_dim: int,
inclusive: bool = False,
) -> int:
"""
Wrap the dimension index to the range [0, max_dim) or [0, max_dim].

Args:
dim: The input dimension index.
max_dim: The maximum dimension index.
inclusive: If True, the maximum dimension index is inclusive.

Return:
The wrapped dimension index.
"""
if max_dim <= 0:
raise ValueError(f"max_dim {max_dim} must be > 0.")
min = -max_dim
Expand Down
64 changes: 28 additions & 36 deletions camtools/colormap.py
Original file line number Diff line number Diff line change
@@ -1,35 +1,47 @@
import matplotlib
import numpy as np
from . import io

from .backend import Tensor, tensor_backend_numpy, tensor_backend_auto, ivy
from jaxtyping import Float
from typing import List, Tuple, Dict
from matplotlib import pyplot as plt

def query(points, colormap="viridis"):

@tensor_backend_numpy
def query(
values: Float[Tensor, "..."],
colormap="viridis",
) -> Float[Tensor, "... 3"]:
"""
Query matplotlib's color map.

Args:
points: Numpy array in float32 or float64. Valid range is [0, 1].
values: Numpy array in float32 or float64. Valid range is [0, 1]. It
can be of arbitrary shape. As matplotlib color maps have different
behaviors for float and int, the input array should be in float.
colormap: Name of matplotlib color map.

Returns:
Numpy array of shape (**points.shape, 3) with dtype float32.
Numpy array of shape (**values.shape, 3) with dtype float32.
"""
assert isinstance(points, np.ndarray)

if not points.dtype == np.float32 and not points.dtype == np.float64:
raise ValueError(
"Matplotlib's colormap has different behavior for ints and floats. "
"To unify behavior, we require floats (between 0-1 if valid). "
f"However, dtype of {points.dtype} is used."
)
try:
cmap = plt.get_cmap(colormap)
except AttributeError:
cmap = plt.colormaps.get_cmap(colormap)

cmap = matplotlib.cm.get_cmap(colormap)
colors = cmap(points)[..., :3] # Remove alpha.
colors = cmap(values)
colors = colors[..., :3] # Remove alpha channel if present

return colors.astype(np.float32)


def normalize(array, vmin=0.0, vmax=1.0, clip=False):
@tensor_backend_auto
def normalize(
array: Float[Tensor, "..."],
vmin: float = 0.0,
vmax: float = 1.0,
clip: bool = False,
):
"""
Normalize array to [vmin, vmax].

Expand All @@ -43,30 +55,10 @@ def normalize(array, vmin=0.0, vmax=1.0, clip=False):
Normalized array of the same shape as the input array.
"""
if clip:
array = np.clip(array, vmin, vmax)
array = ivy.clip(array, x_min=vmin, x_max=vmax)
else:
amin = array.min()
amax = array.max()
array = (array - amin) / (amax - amin) * (vmax - vmin) + vmin

return array


def main():
"""
Test create color map image.
"""
height = 200
width = 1600

colors = query(np.linspace(0, 1, num=width))
im = np.zeros((height, width, 3), dtype=np.float32)
for i in range(width):
im[:, i : i + 1, :] = colors[i]

im_path = "colormap.png"
io.imwrite(im_path, im)


if __name__ == "__main__":
main()
Loading
Loading