├── data/
| └── cifar-10-python.tar.gz
├── demo.py
├── DSSC.py
├── evaluation.py
├── kmeans.py
├── ncut.py
├── preprocessing.py
├── test0.png
├── test1.png
├── test2.png
├── utils.py
python demo.py
The default label is plane.
You can try different labels by
python demo.py --label='your label'
The supported labels in demo are plane, horse and deer.
python kmeans.py
The default label is using kmeans 3d ++ model.
You can try kmeans 5d ++ model by
python kmeans.py --dim=5
python ncut.py
python DSSC.py
python evaluation.py
The model is evaluated by three different metrics -- Accuracy, F-score, NMI. The evaluation evaluates three models' performance on horse, deer and plane. We manually label these pictures as test*.png
for evaluation.
Note that: The table below is ran under 10 test pictures, in submission, we only use 3 test images as example.
Algorithm | ACC | F-score | NMI |
---|---|---|---|
Kmeans++ 3D | 0.69 | 0.72 | 0.54 |
Kmeans++ 5d | 0.63 | 0.57 | 0.48 |
Ncut | 0.71 | 0.66 | 0.52 |
DSSC | 0.76 | 0.75 | 0.62 |