Quan Tang, Bowen Zhang, Jiajun Liu, Fagui Liu, Yifan Liu
ICCV 2023. [arxiv]
This repository contains the official Pytorch implementation of training & evaluation code and the pretrained models for DToP
As shown in the following figure, the network is naturally split into stages using inherent auxiliary blocks.
- Dynamic Token Pruning We introduce a dynamic token pruning paradigm based on the early exit of easy-to-recognize tokens for semantic segmentation transformers.
- Controllable prune ratio One hyperparameter to control the trade-off between computation cost and accuracy.
- Generally applicable e apply DToP to mainstream semantic segmentation transformers and can reduce up to 35% computational cost without a notable accuracy drop.
- requirements
torch==2.0.0 mmcls==1.0.0.rc5, mmcv==2.0.0 mmengine==0.7.0 mmsegmentation==1.0.0rc6
or up-to-date mmxx series till 9 Aug 2023
To aquire the base model
python tools dist_train.sh config/prune/BASE_segvit_ade20k_large.py $work_dirs$
To prune on the base model
python tools dist_train_load.sh config/prune/prune_segvit_ade20k_large.py $work_dirs$ $path_to_ckpt$
python tools/dist_test.sh config/prune/prune_segvit_ade20k_large.py $path_to_ckpt$
Please follow the instructions of mmsegmentation data preparation
Method | Backbone | mIoU | GFlops | config | ckpt |
---|---|---|---|---|---|
Segvit | Vit-base | 49.6 | 109.9 | config | |
Segvit-prune | Vit-base | 49.8 | 86.8 | config | |
Segvit | Vit-large | 53.3 | 617.0 | config | |
Segvit-prune | Vit-large | 52.8 | 412.8 | config |
Method | Backbone | mIoU | GFlops | config | ckpt |
---|---|---|---|---|---|
Segvit | Vit-large | 63.0 | 315.4 | config | |
Segvit-prune | Vit-large | 62.7 | 224.3 | config |
Method | Backbone | mIoU | GFlops | config | ckpt |
---|---|---|---|---|---|
Segvit | Vit-large | 47.4 | 366.9 | config | |
Segvit-prune | Vit-large | 47.1 | 276.2 | config |
For academic use, this project is licensed under the 2-clause BSD License - see the LICENSE file for details. For commercial use, please contact the authors.