Skip to content

Official Pytorch implementation of Dynamic-Token-Pruning (ICCV2023)

License

Notifications You must be signed in to change notification settings

zbwxp/Dynamic-Token-Pruning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Official Pytorch Implementation of DToP

Dynamic Token Pruning in Plain Vision Transformers for Semantic Segmentation

Quan Tang, Bowen Zhang, Jiajun Liu, Fagui Liu, Yifan Liu

ICCV 2023. [arxiv]

This repository contains the official Pytorch implementation of training & evaluation code and the pretrained models for DToP

As shown in the following figure, the network is naturally split into stages using inherent auxiliary blocks.

Highlights

  • Dynamic Token Pruning We introduce a dynamic token pruning paradigm based on the early exit of easy-to-recognize tokens for semantic segmentation transformers.
  • Controllable prune ratio One hyperparameter to control the trade-off between computation cost and accuracy.
  • Generally applicable e apply DToP to mainstream semantic segmentation transformers and can reduce up to 35% computational cost without a notable accuracy drop.

Getting started

  1. requirements
torch==2.0.0 mmcls==1.0.0.rc5, mmcv==2.0.0 mmengine==0.7.0 mmsegmentation==1.0.0rc6 

or up-to-date mmxx series till 9 Aug 2023

Training

To aquire the base model

python tools dist_train.sh config/prune/BASE_segvit_ade20k_large.py  $work_dirs$

To prune on the base model

python tools dist_train_load.sh  config/prune/prune_segvit_ade20k_large.py  $work_dirs$  $path_to_ckpt$

Eval

python tools/dist_test.sh  config/prune/prune_segvit_ade20k_large.py  $path_to_ckpt$

Datasets

Please follow the instructions of mmsegmentation data preparation

Results

Ade20k

Method Backbone mIoU GFlops config ckpt
Segvit Vit-base 49.6 109.9 config
Segvit-prune Vit-base 49.8 86.8 config
Segvit Vit-large 53.3 617.0 config
Segvit-prune Vit-large 52.8 412.8 config

Pascal Context

Method Backbone mIoU GFlops config ckpt
Segvit Vit-large 63.0 315.4 config
Segvit-prune Vit-large 62.7 224.3 config

COCO-Stuff-10K

Method Backbone mIoU GFlops config ckpt
Segvit Vit-large 47.4 366.9 config
Segvit-prune Vit-large 47.1 276.2 config

License

For academic use, this project is licensed under the 2-clause BSD License - see the LICENSE file for details. For commercial use, please contact the authors.

Citation

About

Official Pytorch implementation of Dynamic-Token-Pruning (ICCV2023)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published