Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______
/ \
___2__ ___8__
/ \ / \
0 _4 7 9
/ \
3 5
For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
由于是BST,若p,q节点都小于root,则一定在左子树,若p,q都大于root,则一定在右子树,否则一个大于root,一个小于root,则root就是最低祖先节点
class Solution {
public:
TreeNode *lowestCommonAncestor(TreeNode *root, TreeNode *p, TreeNode *q) {
if (root == nullptr)
return nullptr;
return lowestCommonAncestor(root, p->val, q->val);
}
private:
TreeNode *lowestCommonAncestor(TreeNode *root, int v1, int v2) {
if (root->val > v1 && root->val > v2)
return lowestCommonAncestor(root->left, v1, v2);
if (root->val < v1 && root->val < v2)
return lowestCommonAncestor(root->right, v1, v2);
return root;
}
};
- Lowest Common Ancestor of a Binary Search Tree:求BST最低公共祖先节点
- Lowest Common Ancestor of a Binary Tree:求二叉树最低公共祖先节点