Skip to content

Commit

Permalink
Add detectron2 wrapper (#132)
Browse files Browse the repository at this point in the history
* add detectron2 wrapper
  • Loading branch information
zhanghang1989 authored Jan 28, 2021
1 parent 73b43ba commit 0b75086
Show file tree
Hide file tree
Showing 32 changed files with 2,104 additions and 1 deletion.
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -351,7 +351,7 @@ python verify.py --model resnest50 --crop-size 224
For object detection and instance segmentation models, please visit our [detectron2-ResNeSt fork](https://github.com/zhanghang1989/detectron2-ResNeSt).

### Semantic Segmentation

- Training with PyTorch: [Encoding Toolkit](https://hangzhang.org/PyTorch-Encoding/model_zoo/segmentation.html).
- Training with MXNet: [GluonCV Toolkit](https://gluon-cv.mxnet.io/model_zoo/segmentation.html#ade20k-dataset).

Expand Down
213 changes: 213 additions & 0 deletions d2/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,213 @@
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/resnest-split-attention-networks/instance-segmentation-on-coco)](https://paperswithcode.com/sota/instance-segmentation-on-coco?p=resnest-split-attention-networks)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/resnest-split-attention-networks/object-detection-on-coco)](https://paperswithcode.com/sota/object-detection-on-coco?p=resnest-split-attention-networks)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/resnest-split-attention-networks/panoptic-segmentation-on-coco-panoptic)](https://paperswithcode.com/sota/panoptic-segmentation-on-coco-panoptic?p=resnest-split-attention-networks)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/resnest-split-attention-networks/instance-segmentation-on-coco-minival)](https://paperswithcode.com/sota/instance-segmentation-on-coco-minival?p=resnest-split-attention-networks)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/resnest-split-attention-networks/object-detection-on-coco-minival)](https://paperswithcode.com/sota/object-detection-on-coco-minival?p=resnest-split-attention-networks)

# ResNeSt (Detectron2 Wrapper)

Code for detection and instance segmentation experiments in [ResNeSt](https://hangzhang.org/files/resnest.pdf).


## Training and Inference
Please follow [INSTALL.md](https://github.com/facebookresearch/detectron2/blob/master/INSTALL.md) to install detectron2.

To train a model with 8 gpus, please run
```shell
python train_net.py --num-gpus 8 --config-file your_config.yaml
```

For inference
```shell
python train_net.py \
--config-file your_config.yaml
--eval-only MODEL.WEIGHTS /path/to/checkpoint_file
```

For the inference demo, please see [GETTING_STARTED.md](https://github.com/facebookresearch/detectron2/blob/master/GETTING_STARTED.md).

## Pretrained Models

### Object Detection
<table class="tg">
<tr>
<th class="tg-0pky">Method</th>
<th class="tg-0pky">Backbone</th>
<th class="tg-0pky">mAP%</th>
<th class="tg-0pky">download</th>
</tr>
<tr>
<td rowspan="5" class="tg-0pky">Faster R-CNN</td>
<td class="tg-0pky">ResNet-50</td>
<td class="tg-0pky">39.25</td>
<td class="tg-0lax"><a href="./configs/COCO-Detection/faster_rcnn_R_50_FPN_syncbn_range-scale_1x.yaml">config</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/faster_rcnn_R_50_FPN_syncbn_range-scale_1x-fde56e2b.pth ">model</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/faster_rcnn_R_50_FPN_syncbn_range-scale_1x.txt">log</a> </td>
</tr>
<tr>
<td class="tg-0lax">ResNet-101</td>
<td class="tg-0lax">41.37</td>
<td class="tg-0lax"><a href="./configs/COCO-Detection/faster_rcnn_R_101_FPN_syncbn_range-scale_1x.yaml">config</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/faster_rcnn_R_101_FPN_syncbn_range-scale_1x-57c73356.pth">model</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/faster_rcnn_R_101_FPN_syncbn_range-scale_1x.txt">log</a> </td>
</tr>
<tr>
<td class="tg-0lax">ResNeSt-50 (<span style="color:red">ours</span>)</td>
<td class="tg-0lax"><b>42.33</b></td>
<td class="tg-0lax"><a href="./configs/COCO-Detection/faster_rcnn_ResNeSt_50_FPN_syncbn_range-scale_1x.yaml">config</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/faster_rcnn_ResNeSt_50_FPN_syncbn_range-scale_1x-ad123c0b.pth">model</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/faster_rcnn_ResNeSt_50_FPN_syncbn_range-scale_1x.txt">log</a> </td>
</tr>
<tr>
<td class="tg-0lax">ResNeSt-50-DCNv2 (<span style="color:red">ours</span>)</td>
<td class="tg-0lax"><b>44.11</b></td>
<td class="tg-0lax"><a href="./configs/COCO-Detection/faster_rcnn_ResNeSt_50_FPN_dcn_syncbn_range-scale_1x.yaml">config</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/faster_rcnn_ResNeSt_50_FPN_dcn_syncbn_range-scale_1x.pth">model</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/faster_rcnn_ResNeSt_50_FPN_dcn_syncbn_range-scale_1x.txt">log</a> </td>
</tr>
<tr>
<td class="tg-0lax">ResNeSt-101 (<span style="color:red">ours</span>)</td>
<td class="tg-0lax"><b>44.72</b></td>
<td class="tg-0lax"><a href="./configs/COCO-Detection/faster_rcnn_ResNeSt_101_FPN_syncbn_range-scale_1x.yaml">config</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/faster_rcnn_ResNeSt_101_FPN_syncbn_range-scale_1x-d8f284b6.pth">model</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/faster_rcnn_ResNeSt_101_FPN_syncbn_range-scale_1x.txt">log</a> </td>
</tr>
<tr>
<td rowspan="5" class="tg-0lax">Cascade R-CNN</td>
<td class="tg-0lax">ResNet-50</td>
<td class="tg-0lax">42.52</td>
<td class="tg-0lax"><a href="./configs/COCO-Detection/faster_cascade_rcnn_R_50_FPN_syncbn_range-scale_1x.yaml">config</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/faster_cascade_rcnn_R_50_FPN_syncbn_range-scale_1x-3c7f2ef2.pth">model</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/faster_cascade_rcnn_R_50_FPN_syncbn_range-scale_1x.txt">log</a> </td>
</tr>
<tr>
<td class="tg-0lax">ResNet-101</td>
<td class="tg-0lax">44.03</td>
<td class="tg-0lax"><a href="./configs/COCO-Detection/faster_cascade_rcnn_R_101_FPN_syncbn_range-scale_1x.yaml">config</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/faster_cascade_rcnn_R_101_FPN_syncbn_range-scale_1x-4073359b.pth">model</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/faster_cascade_rcnn_R_101_FPN_syncbn_range-scale_1x.txt">log</a> </td>
</tr>
<tr>
<td class="tg-0lax">ResNeSt-50 (<span style="color:red">ours</span>)</td>
<td class="tg-0lax"><b>45.41</b></td>
<td class="tg-0lax"><a href="./configs/COCO-Detection/faster_cascade_rcnn_ResNeSt_50_FPN_syncbn_range-scale-1x.yaml">config</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/faster_cascade_rcnn_ResNeSt_50_FPN_syncbn_range-scale-1x-e9955232.pth">model</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/faster_cascade_rcnn_ResNeSt_50_FPN_syncbn_range-scale-1x.txt">log</a> </td>
</tr>
<tr>
<td class="tg-0lax">ResNeSt-101 (<span style="color:red">ours</span>)</td>
<td class="tg-0lax"><b>47.50</b></td>
<td class="tg-0lax"><a href="./configs/COCO-Detection/faster_cascade_rcnn_ResNeSt_101_FPN_syncbn_range-scale_1x.yaml">config</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/faster_cascade_rcnn_ResNeSt_101_FPN_syncbn_range-scale_1x-3627ef78.pth">model</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/faster_cascade_rcnn_ResNeSt_101_FPN_syncbn_range-scale_1x.txt">log</a> </td>
</tr>
<tr>
<td class="tg-0lax">ResNeSt-200 (<span style="color:red">ours</span>)</td>
<td class="tg-0lax"><b>49.03</b></td>
<td class="tg-0lax"><a href="./configs/COCO-Detection/faster_cascade_rcnn_ResNeSt_200_FPN_syncbn_range-scale_1x.yaml">config</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/faster_cascade_rcnn_ResNeSt_200_FPN_syncbn_range-scale_1x-1be2a87e.pth">model</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/faster_cascade_rcnn_ResNeSt_200_FPN_syncbn_range-scale_1x.txt">log</a> </td>
</tr>
</table>

We train all models with FPN, SyncBN and image scale augmentation (short size of a image is pickedrandomly from 640 to 800). 1x learning rate schedule is used. All of them are reported on COCO-2017 validation dataset.



### Instance Segmentation
<table class="tg">
<tr>
<th class="tg-0pky">Method</th>
<th class="tg-0pky">Backbone</th>
<th class="tg-0pky">bbox</th>
<th class="tg-0lax">mask</th>
<th class="tg-0pky">download</th>
</tr>
<tr>
<td rowspan="4" class="tg-0pky">Mask R-CNN</td>
<td class="tg-0pky">ResNet-50</td>
<td class="tg-0pky">39.97</td>
<td class="tg-0lax">36.05</td>
<td class="tg-0lax"><a href="./configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_syncbn_1x.yaml">config</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/mask_rcnn_R_50_FPN_syncbn_1x-4939bd58.pth">model</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/mask_rcnn_R_50_FPN_syncbn_1x.txt">log</a> </td>
</tr>
<tr>
<td class="tg-0lax">ResNet-101</td>
<td class="tg-0lax">41.78</td>
<td class="tg-0lax">37.51</td>
<td class="tg-0lax"><a href="./configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_syncbn_1x.yaml">config</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/mask_rcnn_R_101_FPN_syncbn_1x-55493cc2.pth">model</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/mask_rcnn_R_101_FPN_syncbn_1x.txt">log</a> </td>
</tr>
<tr>
<td class="tg-0lax">ResNeSt-50 (<span style="color:red">ours</span>)</td>
<td class="tg-0lax"><b>42.81</b></td>
<td class="tg-0lax"><b>38.14</td>
<td class="tg-0lax"><a href="./configs/COCO-InstanceSegmentation/mask_rcnn_ResNeSt_50_FPN_syncBN_1x.yaml">config</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/mask_rcnn_ResNeSt_50_FPN_syncBN_1x-f442d863.pth">model</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/mask_rcnn_ResNeSt_50_FPN_syncBN_1x.txt">log</a> </td>
</tr>
<tr>
<td class="tg-0lax">ResNeSt-101 (<span style="color:red">ours</span>)</td>
<td class="tg-0lax"><b>45.75</b></td>
<td class="tg-0lax"><b>40.65</b></td>
<td class="tg-0lax"><a href="./configs/COCO-InstanceSegmentation/mask_rcnn_ResNeSt_101_FPN_syncBN_1x.yaml">config</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/mask_rcnn_ResNeSt_101_FPN_syncBN_1x-528502c6.pth">model</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/mask_rcnn_ResNeSt_101_FPN_syncBN_1x.txt">log</a> </td>
</tr>
<tr>
<td rowspan="7" class="tg-0lax">Cascade R-CNN</td>
<td class="tg-0lax">ResNet-50</td>
<td class="tg-0lax">43.06</td>
<td class="tg-0lax">37.19</td>
<td class="tg-0lax"><a href="./configs/COCO-InstanceSegmentation/mask_cascade_rcnn_R_50_FPN_syncbn_1x.yaml">config</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/mask_cascade_rcnn_R_50_FPN_syncbn_1x-03310c9b.pth">model</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/mask_cascade_rcnn_R_50_FPN_syncbn_1x.txt">log</a> </td>
</tr>
<tr>
<td class="tg-0lax">ResNet-101</td>
<td class="tg-0lax">44.79</td>
<td class="tg-0lax">38.52</td>
<td class="tg-0lax"><a href="./configs/COCO-InstanceSegmentation/mask_cascade_rcnn_R_101_FPN_syncbn_1x.yaml">config</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/mask_cascade_rcnn_R_101_FPN_syncbn_1x-8cec1631.pth">model</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/mask_cascade_rcnn_R_101_FPN_syncbn_1x.txt">log</a> </td>
</tr>
<tr>
<td class="tg-0lax">ResNeSt-50 (<span style="color:red">ours</span>)</td>
<td class="tg-0lax"><b>46.19</b></td>
<td class="tg-0lax"><b>39.55</b></td>
<td class="tg-0lax"><a href="./configs/COCO-InstanceSegmentation/mask_cascade_rcnn_ResNeSt_50_FPN_syncBN_1x.yaml">config</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/mask_cascade_rcnn_ResNeSt_50_FPN_syncBN_1x-c58bd325.pth">model</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/mask_cascade_rcnn_ResNeSt_50_FPN_syncBN_1x.txt">log</a> </td>
</tr>
<tr>
<td class="tg-0lax">ResNeSt-101 (<span style="color:red">ours</span>)</td>
<td class="tg-0lax"><b>48.30</b></td>
<td class="tg-0lax"><b>41.56</b></td>
<td class="tg-0lax"><a href="./configs/COCO-InstanceSegmentation/mask_cascade_rcnn_ResNeSt_101_FPN_syncBN_1x.yaml">config</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/mask_cascade_rcnn_ResNeSt_101_FPN_syncBN_1x-62448b9c.pth">model</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/mask_cascade_rcnn_ResNeSt_101_FPN_syncBN_1x.txt">log</a> </td>
</tr>
<tr>
<td class="tg-0lax">ResNeSt-200-tricks-3x (<span style="color:red">ours</span>)</td>
<td class="tg-0lax"><b>50.54</b></td>
<td class="tg-0lax"><b>44.21</b></td>
<td class="tg-0lax"><a href="./configs/COCO-InstanceSegmentation/mask_cascade_rcnn_ResNeSt_200_FPN_syncBN_all_tricks_3x.yaml">config</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/mask_cascade_rcnn_ResNeSt_200_FPN_syncBN_all_tricks_3x.pth">model</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/mask_cascade_rcnn_ResNeSt_200_FPN_syncBN_all_tricks_3x.txt">log</a> </td>
</tr>
<tr>
<td rowspan="2" class="tg-0lax">ResNeSt-200-dcn-tricks-3x (<span style="color:red">ours</span>)</td>
<td class="tg-0lax"><b>50.91</b></td>
<td class="tg-0lax"><b>44.50</b></td>
<td rowspan="2"class="tg-0lax"><a href="./configs/COCO-InstanceSegmentation/mask_cascade_rcnn_ResNeSt_200_FPN_dcn_syncBN_all_tricks_3x.yaml">config</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/mask_cascade_rcnn_ResNeSt_200_FPN_dcn_syncBN_all_tricks_3x-e1901134.pth">model</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/mask_cascade_rcnn_ResNeSt_200_FPN_dcn_syncBN_all_tricks_3x.txt">log</a> </td>
</tr>
<tr>
<td class="tg-0lax"><b>53.30*</b></td>
<td class="tg-0lax"><b>47.10*</b></td>
</tr>
</table>

All models are trained along with FPN and SyncBN. For data augmentation,input images’ shorter side are randomly scaled to one of (640, 672, 704, 736, 768, 800). 1x learning rate schedule is used, if not otherwise specified. All of them are reported on COCO-2017 validation dataset. The values with * demonstrate the mutli-scale testing performance on the test-dev2019.



### Panoptic Segmentation
<table class="tg">
<tr>
<th class="tg-0pky">Backbone</th>
<th class="tg-0pky">bbox</th>
<th class="tg-0lax">mask</th>
<th class="tg-0lax">PQ</th>
<th class="tg-0pky">download</th>
</tr>
<tr>
<td class="tg-0pky">ResNeSt-200</td>
<td class="tg-0pky">51.00</td>
<td class="tg-0lax">43.68</td>
<td class="tg-0lax">47.90</td>
<td class="tg-0lax"><a href="./configs/COCO-PanopticSegmentation/panoptic_ResNeSt_200_FPN_syncBN_tricks_3x.yaml">config</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/panoptic_ResNeSt_200_FPN_syncBN_tricks_3x-43f8b731.pth">model</a> | <a href="https://s3.us-west-1.wasabisys.com/resnest/detectron/panoptic_ResNeSt_200_FPN_syncBN_tricks_3x.txt">log</a> </td>
</tr>
</table>


## Reference

**ResNeSt: Split-Attention Networks** [[arXiv](https://arxiv.org/pdf/2004.08955.pdf)]

Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Muller, R. Manmatha, Mu Li and Alex Smola

```
@article{zhang2020resnest,
title={ResNeSt: Split-Attention Networks},
author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Zhang, Zhi and Lin, Haibin and Sun, Yue and He, Tong and Muller, Jonas and Manmatha, R. and Li, Mu and Smola, Alexander},
journal={arXiv preprint arXiv:2004.08955},
year={2020}
}
```

### Contributors
[Chongruo Wu](https://github.com/chongruo), [Zhongyue Zhang](http://zhongyuezhang.com/), [Hang Zhang](https://hangzhang.org/)
42 changes: 42 additions & 0 deletions d2/configs/Base-RCNN-FPN.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
MODEL:
META_ARCHITECTURE: "GeneralizedRCNN"
BACKBONE:
NAME: "build_resnet_fpn_backbone"
RESNETS:
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
FPN:
IN_FEATURES: ["res2", "res3", "res4", "res5"]
ANCHOR_GENERATOR:
SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
RPN:
IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
PRE_NMS_TOPK_TEST: 1000 # Per FPN level
# Detectron1 uses 2000 proposals per-batch,
# (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
# which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
POST_NMS_TOPK_TRAIN: 1000
POST_NMS_TOPK_TEST: 1000
ROI_HEADS:
NAME: "StandardROIHeads"
IN_FEATURES: ["p2", "p3", "p4", "p5"]
ROI_BOX_HEAD:
NAME: "FastRCNNConvFCHead"
NUM_FC: 2
POOLER_RESOLUTION: 7
ROI_MASK_HEAD:
NAME: "MaskRCNNConvUpsampleHead"
NUM_CONV: 4
POOLER_RESOLUTION: 14
DATASETS:
TRAIN: ("coco_2017_train",)
TEST: ("coco_2017_val",)
SOLVER:
IMS_PER_BATCH: 16
BASE_LR: 0.02
STEPS: (60000, 80000)
MAX_ITER: 90000
INPUT:
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
VERSION: 2
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
_BASE_: "../Base-RCNN-FPN.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
MASK_ON: False
RESNETS:
DEPTH: 101
NORM: "SyncBN"
FPN:
NORM: "SyncBN"
ROI_HEADS:
NAME: CascadeROIHeads
ROI_BOX_HEAD:
NAME: "FastRCNNConvFCHead"
NUM_CONV: 4
NUM_FC: 1
NORM: "SyncBN"
CLS_AGNOSTIC_BBOX_REG: True
RPN:
POST_NMS_TOPK_TRAIN: 2000
SOLVER:
IMS_PER_BATCH: 16
BASE_LR: 0.02
INPUT:
MIN_SIZE_TRAIN: (640, 800)
MIN_SIZE_TRAIN_SAMPLING: "range"
MAX_SIZE_TRAIN: 1333
TEST:
PRECISE_BN:
ENABLED: True

Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
_BASE_: "../Base-RCNN-FPN.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON: False
RESNETS:
DEPTH: 50
NORM: "SyncBN"
FPN:
NORM: "SyncBN"
ROI_HEADS:
NAME: CascadeROIHeads
ROI_BOX_HEAD:
NAME: "FastRCNNConvFCHead"
NUM_CONV: 4
NUM_FC: 1
NORM: "SyncBN"
CLS_AGNOSTIC_BBOX_REG: True
RPN:
POST_NMS_TOPK_TRAIN: 2000
SOLVER:
IMS_PER_BATCH: 16
BASE_LR: 0.02
INPUT:
MIN_SIZE_TRAIN: (640, 800)
MIN_SIZE_TRAIN_SAMPLING: "range"
MAX_SIZE_TRAIN: 1333
TEST:
PRECISE_BN:
ENABLED: True

Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
_BASE_: "../ResNest-Base-RCNN-FPN.yaml"
MODEL:
WEIGHTS: "https://s3.us-west-1.wasabisys.com/resnest/detectron/resnest101_detectron-486f69a8.pth"
MASK_ON: False
RESNETS:
DEPTH: 101
STRIDE_IN_1X1: False
RADIX: 2
NORM: "SyncBN"
FPN:
NORM: "SyncBN"
ROI_HEADS:
NAME: CascadeROIHeads
ROI_BOX_HEAD:
NAME: "FastRCNNConvFCHead"
NUM_CONV: 4
NUM_FC: 1
NORM: "SyncBN"
CLS_AGNOSTIC_BBOX_REG: True
RPN:
POST_NMS_TOPK_TRAIN: 2000
PIXEL_MEAN: [123.68, 116.779, 103.939]
PIXEL_STD: [58.393, 57.12, 57.375]
SOLVER:
IMS_PER_BATCH: 16
BASE_LR: 0.02
INPUT:
MIN_SIZE_TRAIN: (640, 800)
MIN_SIZE_TRAIN_SAMPLING: "range"
MAX_SIZE_TRAIN: 1333
FORMAT: "RGB"
TEST:
PRECISE_BN:
ENABLED: True
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
_BASE_: "../ResNest-Base-RCNN-FPN.yaml"
MODEL:
WEIGHTS: "https://s3.us-west-1.wasabisys.com/resnest/detectron/resnest200_detectron-02644020.pth"
MASK_ON: False
RESNETS:
DEPTH: 200
STRIDE_IN_1X1: False
RADIX: 2
NORM: "SyncBN"
FPN:
NORM: "SyncBN"
ROI_HEADS:
NAME: CascadeROIHeads
ROI_BOX_HEAD:
NAME: "FastRCNNConvFCHead"
NUM_CONV: 4
NUM_FC: 1
NORM: "SyncBN"
CLS_AGNOSTIC_BBOX_REG: True
RPN:
POST_NMS_TOPK_TRAIN: 2000
PIXEL_MEAN: [123.68, 116.779, 103.939]
PIXEL_STD: [58.393, 57.12, 57.375]
SOLVER:
IMS_PER_BATCH: 16
BASE_LR: 0.02
INPUT:
MIN_SIZE_TRAIN: (640, 800)
MIN_SIZE_TRAIN_SAMPLING: "range"
MAX_SIZE_TRAIN: 1333
FORMAT: "RGB"
TEST:
PRECISE_BN:
ENABLED: True
Loading

0 comments on commit 0b75086

Please sign in to comment.