HyperAttentionDTI: improving drug–protein interaction prediction by sequence-based deep learning with attention mechanism This repository contains the source code and the data.
Dependencies:
- python 3.6
- pytorch >=1.2
- numpy
- sklearn
- tqdm
- tensorboardX
- prefetch_generator
-
README.md: this file.
-
data: The datasets used in paper.
- DrugBank.txt:
- KIBA.txt:
- Davis.txt In the directory of data, we now have the original data "DrugBank/KIBA/Davis.txt" as follows:
Drug_ID Protein_ID Drug_SMILES Amino_acid_sequence interaction DB00303 P45059 [H][C@]12[C@@H]... MVKFNSSRKSGKSKKTIRKLT... 1 DB00114 P19113 CC1=NC=C(COP(O)... MMEPEEYRERGREMVDYICQY... 1 DB00117 P19113 N[C@@H](CC1=CNC... MMEPEEYRERGREMVDYICQY... 1 ... ... ... DB00441 P48050 NC1=NC(=O)N(C=C... MHGHSRNGQAHVPRRKRRNRF... 0 DB08532 O00341 FC1=CC=CC=C1C1=... MVPHAILARGRDVCRRNGLLI... 0
-
dataset.py: data process.
-
HpyerAttentionDTI_main.py: train and test the model.
-
hyperparameter.py: set the hyperparameter of HpyerAttentionDTI
-
model.py: HpyerAttentionDTA model architecture
-
pytorchtools: early stopping
python HpyerAttentionDTI_main.py